首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cassava (Manihot esculenta Crantz), though a major world crop with enormous potential, is very under studied. Little is known about its genome structure and organisation. Transposable elements have a key role in the evolution of genome structure, and can be used as important tools in applied genetics. This paper sets out to survey the diversity of members of three major classes of transposable element within the cassava genome and in relation to similar elements in other plants. Members of two classes of LTR-retrotransposons, Ty1/copia-like and Ty3/gypsy-like, and of Enhancer/Suppressor Mutator (En/Spm)-like transposons were isolated and characterised. Analyses revealed 59 families of Ty1/copia, 26 families of Ty3/gypsy retrotransposons, and 40 families of En/Spm in the cassava genome. In the comparative analyses, the predicted amino acid sequences for these transposon classes were compared with those of related elements from other plant species. These revealed that there were multiple lineages of Ty1/copia-like retrotransposons in the genome of cassava and suggested that vertical and horizontal transmission as the source of cassava Mecops may not be mutually exclusive. For the Ty3/gypsy elements network, two groups of cassava Megyps were evident including the Arabidopsis Athila lineage. However, cassava En/Spm-like elements (Meens) constituted a single group within a network of plant En/Spm-like elements. Hybridisation analysis supported the presence of transposons in the genome of cassava in medium (Ty3/gypsy and En/Spm) to high (Ty1/copia) copy numbers. Thus the cassava genome was shown to contain diverse members of three major classes of transposable element; however, the different classes exhibited contrasting evolutionary histories.  相似文献   

2.
3.
Transposable elements have been widely used as mutagens in many organisms. Among them, the maize transposable element En/Spm has been shown to transpose efficiently in several plant species including the model plant Arabidopsis, where it has been used for large-scale mutagenesis. To determine whether we could use this transposon as a mutagen in the model legume plant Medicago truncatula, we tested the activity of the autonomous element, as well as two defective elements, in this plant, and in Arabidopsis as a positive control. In agreement with previous reports, we observed efficient excision of the autonomous En/Spm element in A. thaliana. This element was also active in M. truncatula, but the transposition activity was low and was apparently restricted to the tissue culture step necessary for the production of transgenic plants. The activity of one of the defective transposable elements, dSpm, was very low in A. thaliana and even lower in M. truncatula. The use of different sources of transposases suggested that this defect in transposition was associated with the dSpm element itself. Transposition of the other defective element, I6078 , was also detected in M. truncatula, but, as observed with the autonomous element, transposition events were very rare and occurred during tissue culture. These results suggest that the En/Spm element is rapidly inactivated in the regenerated plants and their progeny, and therefore is not suitable for routine insertion mutagenesis in M. truncatula.Communicated by M.-A. Grandbastien  相似文献   

4.
5.
6.
We have developed a novel system for insertional mutagenesis in rice (Oryza sativa) based on the maize (Zea mays) enhancer/suppressor mutator (En/Spm) element. In this system, a single T-DNA construct with Spm-transposase and the non-autonomous defective suppressor mutator (dSpm) element is used in conjunction with green fluorescent protein (GFP) and Discosoma sp. Red Fluorescence Protein (DsRed) fluorescent markers to select unlinked stable transpositions of dSpm. Using this system, we could demonstrate high frequencies of unlinked germinal transposition of dSpm in rice. Analysis of dSpm flanking sequences from 353 stable insertion lines revealed that the dSpm insertions appear to be widely distributed on rice chromosomes with a preference for genic regions (70%). The dSpm insertions appear to differ from Activator-Dissociation (Ac-Ds) elements in genomic distribution and exhibit a greater fraction of unlinked transpositions when compared with Ds elements. The results obtained in this study demonstrate that the maize En/Spm element can be used as an effective tool for functional genomics in rice and can complement efforts using other insertional mutagens. Further, the efficacy of the non-invasive fluorescence-based selection system is promising for its application to other crops.  相似文献   

7.
Transposable elements (TEs) represent an important fraction of plant genomes and play a significant role in gene and genome evolution. Among all TE superfamilies discovered in plants, Mutator from maize (Zea mays) is the most active and mutagenic element. Mutator-like elements (MULEs) were identified in a wide range of plants. However, only few active MULEs have been reported, and the transposition mechanism of the elements is still poorly understood. In this study, an active MULE named Os3378 was discovered in rice (Oryza sativa) by a combination of computational and experimental approaches. The four newly identified Os3378 elements share more than 98% sequence identity between each other, and all of them encode transposases without any deletion derivatives, indicating their capability of autonomous transposition. Os3378 is present in the rice species with AA genome type but is absent in other non-AA genome species. A new insertion of Os3378 was identified in a rice somaclonal mutant Z418, and the element remained active in the descendants of the mutant for more than ten generations. Both germinal and somatic excision events of Os3378 were observed, and no footprint was detected after excision. Furthermore, the occurrence of somatic excision of Os3378 appeared to be associated with plant developmental stages and tissue types. Taken together, Os3378 is a unique active element in rice, which provides a valuable resource for further studying of transposition mechanism and evolution of MULEs.  相似文献   

8.
9.
10.
11.
12.
Transposable elements (TEs) have a significant impact on the evolution of gene function and genome structures. An endogenous nonautonomous transposable element nDart was discovered in an albino mutant that had an insertion in the Mg-protoporphyrin IX methyltransferase gene in rice. In this study, we elucidated the transposition behavior of nDart, the frequency of nDart transposition and characterized the footprint of nDart. Novel independent nDart insertions in backcrossed progenies were detected by DNA blotting analysis. In addition, germinal excision of nDart occurred at very low frequency compared with that of somatic excision, 0–13.3%, in the nDart1-4(3-2) and nDart1-A loci by a locus-specific PCR strategy. A total of 253 clones from somatic excision at five nDart loci in 10 varieties were determined. nDart rarely caused deletions beyond target site duplication (TSD). The footprint of nDart contained few transversions of nucleotides flanking to both sides of the TSD. The predominant footprint of nDart was an 8-bp addition. Precise excision of nDart was detected at a rate of only 2.2%, which occurred at two loci among the five loci examined. Furthermore, the results in this study revealed that a highly conserved mechanism of transposition is involved between maize Ac/Ds and rice Dart/nDart, which are two-component transposon systems of the hAT superfamily transposons in plant species.  相似文献   

13.
The mobile nonautonomous element nDart, which is active in intact rice plants, exhibits locus specific transposition. Due to the high homogeneity of nDart elements, the locus specificity of nDart transposition might be controlled by factors other than genetic differences. In this study, we elucidated the regulation of the locus specificity of nDart transposition. The difference of transpositional activities in 10 nDart elements among rice varieties exhibiting nDart transposition was clearly correlated with the methylation state of nDart elements. Both hyper- and hypo-methylated nDart elements were inactive, while site specific methylation in both subterminal regions was identified in active nDart loci. The specific methylation sites contain the pentamer motif GCC/ACG. The repeated motifs in the subterminal region of nDart elements may contribute to the stable secondary structure of nDart elements with low free energy. Our results suggested that site specific cytosine methylation may loosen the stable secondary structure of the nDart element to allow it to bind TPase, which then perform the excision of nDart elements from genomic loci.  相似文献   

14.
The MADS box genes participate in different steps of vegetative and reproductive plant development, including the most important phases of the reproductive process. Here we describe the isolation and characterisation of two Asparagus officinalis MADS box genes, AOM3 and AOM4. The deduced AOM3 protein shows the highest degree of similarity with ZAG3 and ZAG5 of maize, OsMADS6 of rice and AGL6 of Arabidopsis thaliana. The deduced AOM4 protein shows the highest degree of similarity with AOM1 of asparagus, the SEP proteins of Arabidopsis and the rice proteins OsMADS8, OsMADS45 and OsMADS7. The high level of identity between AOM1 and AOM4 made impossible the preparation of probes specific for one single gene, so the hybridisation signal previously described for AOM1 is probably due to the expression of both genes. The expression profile of AOM3 and AOM1/AOM4 during flower development is identical, and similar to that of the SEP genes. Asparagus genes, however, are expressed not only in flower organs, but also in the different meristem present on the apical region of the shoot during the flowering season: the apical meristem and the three lateral meristems emerging from the leaf axillary region that will give rise to flowers and lateral inflorescences during flowering season, and to phylloclades and branches during the subsequent vegetative phase. The expression of AOM3 and AOM1/AOM4 in these meristems appears to be correlated with the reproductive function of the apex as the hybridisation signal disappears when the apex switches to vegetative function.  相似文献   

15.
16.
17.
18.
Abstract Numerous miniature inverted repeat transposable elements (MITEs) are present in the rice genome but their transposition mechanisms are unknown. In this report, we present evidence that two novel MITE families may have arisen from Mutator-related transposable elements and thus may use a transposition mechanism similar to that of Mutator elements. Two families of novel MITEs, namely, MDM-1 and MDM-2, were identified by searching for MITEs nested with Kiddo, a previously identified MITE family. MDM-1 and MDM-2 bear hallmarks of Mutator elements, such as long terminal inverted repeats (LTIRs), 9-bp target-site duplications (TSDs), and putative transposase binding sites. Strikingly, the MDM-1 family has a 9-bp terminus identical to that of a rice Mutator-like element (MULE-9) and the MDM-2 family has an 8-bp terminus identical to that of the maize autonomous Mutator element MuDR. A putative transposase homologous to MURA protein is identified for the MDM-2 family. Thus, these two novel MITE families, with a total copy number of several hundred in rice, are designated Mutator-derived MITEs (MDMs). Interestingly, sequence decay analysis of MDM families revealed a number of insertion site duplications (ISDs) in the alignment gaps, and widespread historical nesting events are proposed to account for the existence of these ISDs. In addition to its value for discovering new MITEs, the nesting analysis approach used in this study simultaneously identifies MITE insertion polymorphisms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号