首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transducin (T alpha beta gamma), the heterotrimeric GTP-binding protein that interacts with photoexcited rhodopsin (Rh*) and the cGMP-phosphodiesterase (PDE) in retinal rod cells, is sensitive to cholera (CTx) and pertussis toxins (PTx), which catalyze the binding of an ADP-ribose to the alpha subunit at Arg174 and Cys347, respectively. These two types of ADP-ribosylations are investigated with transducin in vitro or with reconstituted retinal rod outer-segment membranes. Several functional perturbations inflicted on T alpha by the resulting covalent modifications are studied such as: the binding of T alpha to T beta gamma to the membrane and to Rh*; the spontaneous or Rh*-catalysed exchange of GDP for GTP or guanosine 5-[gamma-thio]triphosphate (GTP[gamma S]), the conformational switch and activation undergone by transducin upon this exchange, the activation of T alpha GDP by fluoride complexes and the activation of the PDE by T alpha GTP. ADP-ribosylation of transducin by CTx requires the GTP-dependent activation of ADP-ribosylation factors (ARF), takes place only on the high-affinity, nucleotide-free complex, Rh*-T alpha empty-T beta gamma and does not activate T alpha. Subsequent to CTx-catalyzed ADP-ribosylation the following occurs: (a) addition of GDP induces the release from Rh* of inactive CTxT alpha GDP (CTxT alpha, ADP-ribosylated alpha subunit of transducin) which remains associated to T beta gamma; (b) CTxT alpha GDP-T beta gamma exhibits the usual slow kinetics of spontaneous exchange of GDP for GTP[gamma S] in the absence of Rh*, but the association and dissociation of fluoride complexes, which act as gamma-phosphate analogs, are kinetically modified, suggesting that the ADP-ribose on Arg174 specifically perturbs binding of the gamma-phosphate in the nucleotide site; (c) CTxT alpha GDP-T beta gamma can still couple to Rh* and undergo fast nucleotide exchange; (d) CTxT alpha GTP[gamma S] and CTxT alpha GDP-AlFx (AlFx, Aluminofluoride complex) activate retinal cGMP-phosphodiesterase (PDE) with the same efficiency as their unmodified counterparts, but the kinetics and affinities of fluoride activation are changed; (e) CTxT alpha GTP hydrolyses GTP more slowly than unmodified T alpha GTP, which entirely accounts for the prolonged action of CTxT alpha GTP on the PDE; (f) after GTP hydrolysis, CTxT alpha GDP reassociates to T beta gamma and becomes inactive. Thus, CTx catalyzed ADP-ribosylation only perturbs in T alpha the GTP-binding domain, but not the conformational switch nor the domains of contact with the T beta gamma subunit, with Rh* and with the PDE.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
v-Ha-ras encoded p21 protein (p21V), the cellular c-Ha-ras encoded protein (p21C) and its T24 mutant form p21T were produced in Escherichia coli under the control of the tac promoter. Large amounts of the authentic proteins in a soluble form can be extracted and purified without the use of denaturants or detergents. All three proteins are highly active in GDP binding, GTPase and, for p21V, autokinase activity. Inhibition of [3H]GDP binding to p21C by regio- and stereospecific phosphorothioate analogs of GDP and GTP was investigated to obtain a measure of the relative affinities of the three diphosphate and five triphosphate analogs of guanosine. p21 has a preference for the Sp isomers of GDP alpha S and GTP alpha S. It has low specificity for the Sp isomer of GTP beta S. Together with the data for GDP beta S and GTP gamma S these results are compared with those obtained for elongation factor (EF)Tu and transducin. This has enabled us to probe the structural relatedness of these proteins. We conclude that p21 seems to be more closely related to EF-Tu than to transducin.  相似文献   

3.
The stereochemical course of the reaction catalyzed by guanylate cyclase from bovine retinal rod outer segments was investigated using phosphorothioate analogs of GTP as chiral probes. (Sp)-Guanosine 5'-O-(1-thiotriphosphate) (Sp-GTP alpha S) is a substrate, whereas (Rp)-GTP alpha S is a competitive inhibitor (K1 = 0.1 mM), but not a substrate. (Sp)-GTP alpha S is converted into (Rp)-guanosine 3':5'-monophosphorothioate, showing that the reaction proceeds with inversion of configuration at the alpha-phosphorus atom. Km and Vmax for (Sp)-GTP alpha S (at low [Ca2+], 20 nM) are 3.7 mM and 1.1 nmol/min/mg of rhodopsin, respectively, compared with 1.1 mM and 23.1 nmol/min/mg of rhodopsin for GTP. Vmax for the cyclization of (Sp)-GTP alpha S, as for GTP, increases 10-20-fold when the calcium level is lowered. This activity change is centered at approximately 90 nM and has a Hill coefficient of 4.8. The configuration of the metal-substrate complex was determined by measuring the effectiveness of the Sp and Rp isomers of GTP alpha S and guanosine 5'-O-(2-thiotriphosphate) (GTP beta S) in the presence of Mg2+ or Mn2+. (Sp)-GTP alpha S is a substrate with either Mg2+ or Mn2+, whereas (Rp)-GTP beta S is a substrate with only Mn2+. These findings suggest that the substrate is a metal-beta, gamma-bidentate complex with delta screwsense. We also found that the cyclization reaction catalyzed by the membrane-bound guanylate cyclase from sea urchin sperm proceeds with inversion of configuration at the alpha-phosphorus atom. The stereochemical course of the reactions catalyzed by all prokaryotic and eukaryotic adenylate cyclases and guanylate cyclases studied thus far is the same.  相似文献   

4.
The diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S), adenosine 5'-O-(2-thiotriphosphate) (ATP beta S), and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) could act as substrates for phosphomevalonate kinase in the presence of Mg2+ and Cd2+ as activating divalent metal cations. The Sp diastereomer of ATP alpha S was the preferred substrate regardless of the metal ion used, consistent with the metal ion not binding to the alpha-phosphate. With ATP beta S, the Sp diastereomer was the preferred substrate with Mg2+, and the Rp diastereomer was the preferred substrate with Cd2+. The reversal of specificity establishes that the metal is chelated through the beta-phosphate in the active site of the phosphomevalonate kinase reaction. A comparison of the Vmax values as a function of substitution of oxygen by sulfur showed the order for Mg2+ to be: ATP greater than ATP alpha S(Sp) greater than ATP alpha S(Rp) greater than ATP beta S(Sp) greater than ATP gamma S greater than ATP beta S(Rp). With Cd2+ as the activating metal ion, the order was: ATP greater than ATP alpha S(Sp) greater than ATP alpha S(Rp) greater than ATP beta S(Rp) greater than ATP gamma S greater than ATP beta S(Sp). It is concluded that the chelate structure of metal ATP substrate in the phosphomevalonate kinase reaction is the delta, beta, gamma-bidentate complex. 31P NMR measurements and radioassay with [2-14C] phosphomevalonate were used to measure the equilibrium of the reaction catalyzed by phosphomevalonate kinase with ATP and phosphorothioate analogues of ATP as the phosphoryl group donor. The order as a phosphate donor as determined by both methods in the phosphomevalonate kinase reaction is ATP beta S greater than ATP alpha S greater than ATP greater than ATP gamma S. Except for ATP gamma S, the equilibrium is shifted in the direction of formation of ADP alpha S and ADP beta S relative to ADP formation. Thus, ATP beta S rather than ATP would be effective for the synthesis of diphosphomevalonate. The phosphomevalonate kinase reaction could also be used to synthesize mevalonate 5-(2-thiodiphosphate) using ATP gamma S as the phosphoryl group donor.  相似文献   

5.
G Yamanaka  F Eckstein  L Stryer 《Biochemistry》1986,25(20):6149-6153
The interaction of six hydrolysis-resistant analogues of GTP with transducin, the signal-coupling protein in vertebrate photoreceptors, was investigated. GppNHp and GppCH2p differ from GTP at the bridging position between the beta- and gamma-phosphate groups. The other analogues studied (GTP gamma F, GTP gamma OMe, GTP gamma OPh, and GTP gamma S) differ from GTP in containing a substituent on the gamma-phosphorus atom or at a nonbridging gamma-oxygen atom. Competition binding experiments were carried out by adding an analogue, [alpha-32P]GTP, and a catalytic amount of photoexcited rhodopsin (R) to transducin and measuring the amount of bound [gamma-32P]GTP. The order of effectiveness of these analogues in binding to transducin was GTP gamma S greater than GTP much greater than GppNHp greater than GTP gamma OPh greater than GTP gamma OMe greater than GppCH2p greater than GTP gamma F A second assay measured the effectiveness of GTP gamma S, GppNHp, and GppCH2p in eluting transducin from disc membranes containing R. The basis of this assay is that transducin is released from disc membranes when it is activated to the GTP form. The relative potency of these three analogues in converting transducin from a membrane-bound to a soluble form was 1000, 75, and 1, respectively. Stimulation of cGMP phosphodiesterase activity served as a third criterion of the interaction of these analogues with transducin. The order of effectiveness of these analogues in promoting the transducin-mediated activation of the phosphodiesterase was GTP gamma S greater than GTP much greater than GppNHp greater than GTP gamma OPh much greater than GppCH2p greater than GTP gamma OMe greater than GTP gamma F GTP gamma S was more than a 1000 times as potent as GTP gamma F in activating the phosphodiesterase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
V N Hingorani  L F Chang  Y K Ho 《Biochemistry》1989,28(18):7424-7432
The structure of the GTP-binding site of transducin, a signal-transducing G-protein involved in the visual excitation process, was studied by affinity labeling. Radioactive GTP analogues with reactive groups attached to different moieties of the GTP molecule were obtained and include 8-azido-GTP, P3-(4-azidoanilino)-P1-5'-GTP (AA-GTP), 5'-[p-(fluorosulfonyl)benzoyl]guanosine (FSBG), 3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)-GTP (ANPAP-GTP), the 2',3'-dialdehyde derivative of GTP (oGTP), and a bifunctional cross-linking analogue, 8-azido-P3-(4-azidoanilino)-P1-5'-GTP (8-azido-AA-GTP). With the exception of FSBG, all of the analogues were found to bind to transducin specifically and serve as a cofactor to activate the retinal cGMP cascade or act as a competitive inhibitor for the GTPase activity of transducin. The labeling sites of these analogues were localized by tryptic peptide mapping. ANPAP-GTP and oGTP were unable to covalently modify transducin, suggesting that the 2'- and 3'-hydroxy groups on the ribose ring of GTP are not in direct contact with the protein. AA-GTP only labeled the T alpha subunit of transducin and was localized on the 21-kDa tryptic fragment of T alpha. This indicates that the phosphate moiety of the bound GTP is in direct contact with this peptide. On the other hand, 8-azido-GTP labeled both the T alpha and T beta gamma subunits of transducin. The labeling on T alpha was on the 12-kDa tryptic fragment, suggesting that the guanine ring binding site is composed of a different peptide fragment than the phosphate binding region. Treatment with the bifunctional analogue 8-azido-AA-GTP generated the cross-linked products of T alpha and T beta gamma. This observation implies that the guanine ring of the bound GTP on T alpha could be in close proximity with T beta gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The functional interactions of the retinal G protein, transducin, with the cyclic GMP phosphodiesterase (PDE) have been examined using the different purified subunit components of transducin and the native and trypsin-treated forms of the effector enzyme. The limited trypsin treatment of the PDE removes the low molecular weight gamma subunit (Mr approximately 14,000) of the enzyme, yielding a catalytic moiety comprised of the two larger molecular subunits (alpha, Mr approximately 85,000-90,000; beta, Mr approximately 85,000-90,000), which is insensitive to the addition of either the pure alpha T.GTP gamma S species or the pure beta gamma T subunit complex. However, the addition of the pure alpha T.GDP species to the trypsin-treated PDE (tPDE) results in a significant (90-100%) inhibition of the enzyme activity. This inhibition can be reversed by excess beta gamma T, suggesting that the holotransducin molecule does not (functionally) interact with the tPDE. However, the inhibition by alpha T.GDP is not reversed by the alpha T.GTP gamma S complex, over a range of [alpha T.GTP gamma S] which elicits a marked stimulation of the native enzyme activity, suggesting that the activated alpha T species does not effectively bind to the tPDE. The alpha T.GDP complex also is capable of inhibiting the alpha T.GTP gamma S-stimulated cyclic GMP hydrolysis by the native PDE. This inhibition can be reversed by excess alpha T.GTP gamma S, as well as by beta gamma T, indicating that the binding site for the activated alpha T species is in close proximity and/or overlaps the binding site for the alpha T.GDP complex on the enzyme. Overall, these results are consistent with a scheme where (a) both the small and larger molecular weight subunits of PDE participate in alpha T-PDE interactions, (b) the activation of PDE by the alpha T.GTP gamma S (or alpha T.GTP) species does not result in the complete dissociation of the gamma subunit from the enzyme, and (c) the deactivation of this signal transduction system results from a direct interaction between the alpha T.GDP species and the catalytic moiety of the effector enzyme.  相似文献   

8.
The beta gamma subunits of G-proteins are composed of closely related beta 35 and beta 36 subunits tightly associated with diverse 6-10 kDa gamma subunits. We have developed a reconstitution assay using rhodopsin-catalyzed guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) binding to resolved alpha subunit of the retinal G-protein transducin (Gt alpha) to quantitate the activity of beta gamma proteins. Rhodopsin facilitates the exchange of GTP gamma S for GDP bound to Gt alpha beta gamma with a 60-fold higher apparent affinity than for Gt alpha alone. At limiting rhodopsin, G-protein-derived beta gamma subunits catalytically enhance the rate of GTP gamma S binding to resolved Gt alpha. The isolated beta gamma subunit of retinal G-protein (beta 1, gamma 1 genes) facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha in a concentration-dependent manner (K0.5 = 254 +/- 21 nM). Purified human placental beta 35 gamma, composed of beta 2 gene product and gamma-placenta protein (Evans, T., Fawzi, A., Fraser, E.D., Brown, L.M., and Northup, J.K. (1987) J. Biol. Chem. 262, 176-181), substitutes for Gt beta gamma reconstitution of rhodopsin with Gt alpha. However, human placental beta 35 gamma facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha with a higher apparent affinity than Gt beta gamma (K0.5 = 76 +/- 54 nM). As an alternative assay for these interactions, we have examined pertussis toxin-catalyzed ADP-ribosylation of the Gt alpha subunit which is markedly enhanced in rate by beta gamma subunits. Quantitative analyses of rates of pertussis modification reveal no differences in apparent affinity between Gt beta gamma and human placental beta 35 gamma (K0.5 values of 49 +/- 29 and 70 +/- 24 nM, respectively). Thus, the Gt alpha subunit alone does not distinguish among the beta gamma subunit forms. These results clearly show a high degree of functional homology among the beta 35 and beta 36 subunits of G-proteins for interaction with Gt alpha and rhodopsin, and establish a simple functional assay for the beta gamma subunits of G-proteins. Our data also suggest a specificity of recognition of beta gamma subunit forms which is dependent both on Gt alpha and rhodopsin. These results may indicate that the recently uncovered diversity in the expression of beta gamma subunit forms may complement the diversity of G alpha subunits in providing for specific receptor recognition of G-proteins.  相似文献   

9.
Transducin, a retinal G-protein, has been shown to exist as heterotrimers of alpha (39,000), beta (36,000), and gamma (approximately 7,000) subunits. Blue Sepharose CL-6B column chromatography of a transducin preparation extracted with a metal-free, low salt buffer containing GTP showed three distinct alpha and two distinct beta gamma activities in frog (Rana catesbeiana) rod outer segment. The binding of a hydrolysis-resistant GTP analog in these alpha fractions was proportional to the amount of the M(r) 39,000 protein. The first alpha was eluted in a complex with an inhibitory subunit of cGMP phosphodiesterase, but alpha subunits in the second and the third fractions were not complexed with any proteins. Two-dimensional gel electrophoresis and characterization with regard to the interaction with the inhibitory subunit of cGMP phosphodiesterase suggested that the first and the second alpha s were the same protein; however, the third alpha showed different characters as follows. We designated alpha in the first two fractions as alpha 1, and alpha in the third fraction as alpha 2. Nonlinear regression analysis for the binding of a hydrolysis-resistant GTP analog to both alpha subunits revealed a single class of GTP binding sites with an apparent stoichiometry of 1 mol of GTP/mol of alpha. Compared with alpha 1, alpha 2 required larger amounts of rhodopsin and beta gamma for the binding of a hydrolysis-resistant GTP analog. alpha 2 also showed less binding with the inhibitory subunit of cGMP phosphodiesterase. Both alpha 1 and alpha 2 complexed with beta gamma or beta delta (described below) were substrates for pertussis toxin-dependent ADP-ribosylation. The protein profiles of two beta gamma fractions revealed that the main fraction was composed of a beta gamma complex; however, the second active fraction was composed of beta complexed with delta (M(r) 12,000). Compared with beta gamma, beta delta stimulated GTP binding to alpha 1 at approximately 10-fold higher concentration. Two-dimensional gel electrophoresis revealed five beta and two gamma isoforms in beta gamma. Only one beta isoform was present in beta delta. The diversity of transducin subunits may reflect different signaling pathways in visual signal transduction.  相似文献   

10.
J Bigay  P Deterre  C Pfister    M Chabre 《The EMBO journal》1987,6(10):2907-2913
Fluoride activation of G proteins requires the presence of aluminium or beryllium and it has been suggested that AIF4- acts as an analogue of the gamma-phosphate of GTP in the nucleotide site. We have investigated the action of AIF4- or of BeF3- on transducin (T), the G protein of the retinal rods, either indirectly through the activation of cGMP phosphodiesterase, or more directly through their effects on the conformation of transducin itself. In the presence of AIF4- or BeF3-, purified T alpha subunit of transducin activates purified cyclic GMP phosphodiesterase (PDE) in the absence of photoactivated rhodopsin. Activation is totally reversed by elution of fluoride or partially reversed by addition of excess T beta gamma. Activation requires that GDP or a suitable analogue be bound to T alpha: T alpha-GDP and T alpha-GDP alpha S are activable by fluorides, but not T alpha-GDP beta S, nor T alpha that has released its nucleotide upon binding to photoexcited rhodopsin. Analysis of previous works on other G proteins and with other nucleotide analogues confirm that in all cases fluoride activation requires that a GDP unsubstituted at its beta phosphate be bound in T alpha. By contrast with alumino-fluoride complexes, which can adopt various coordination geometries, all beryllium fluoride complexes are tetracoordinated, with a Be-F bond length of 1.55 A, and strictly isomorphous to a phosphate group. Our study confirms that fluoride activation of transducin results from a reversible binding of the metal-fluoride complex in the nucleotide site of T alpha, next to the beta phosphate of GDP, as an analogue of the gamma phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Transducin, the guanyl nucleotide-binding protein of the retinal light-activated cGMP phosphodiesterase system, is structurally and functionally similar to the inhibitory and stimulatory guanyl nucleotide-binding proteins, Gi and Gs, of the adenylate cyclase complex. All are heterotrimers composed of alpha, beta, and gamma subunits. Gs and Gi can be activated by NaF with AlCl3 as well as by agonists acting through specific receptors. The effects of NaF and AlCl3 on transducin were investigated in a reconstituted system consisting of the purified subunits of transducin (T alpha, T beta, gamma) and rhodopsin. NaF noncompetitively inhibited the GTPase activity of T alpha in a concentration- and time-dependent manner. Inhibition by NaF was enhanced synergistically by AlCl3 which alone only slightly inhibited GTPase activity. None of the other anions tested reproduced the effect of fluoride. Fluoride inhibited [3H]guanosine 5'-(beta, gamma-imido)triphosphate binding to T alpha and release of bound GDP. The ADP-ribosylation of T alpha by pertussis toxin and binding of T alpha to rhodopsin, both of which are enhanced in the presence of T beta gamma, were inhibited by NaF and AlCl3. These findings are consistent with the hypothesis that fluoride enhances the dissociation of T alpha from T beta gamma, resulting in the inhibition of GTP-GDP exchange, and therefore, GTP hydrolysis.  相似文献   

12.
Mg2+ interacts with the alpha subunits of guanine nucleotide-binding regulatory proteins (G proteins) in the presence of guanosine-5'-[gamma-thio]triphosphate (GTP-gamma S) to form a highly fluorescent complex from which nucleotide dissociates very slowly. The apparent Kd for interaction of G alpha X GTP gamma S with Mg2+ is approximately 5 nM, similar to the Km for G protein GTPase activity X G beta gamma increases the rate of dissociation of GTP gamma S from G alpha X GTP gamma S or G alpha X GTP gamma S X Mg2+ at low concentrations of Mg2+. When the concentration of Mg2+ exceeds 1 mM, G beta gamma dissociates from G beta gamma X G alpha X GTP gamma S X Mg2+. Compared with the dramatic effect of Mg2+ on binding of GTP gamma S to G alpha, the metal has relatively little effect on the binding of GDP. However, G beta gamma increases the affinity of G alpha for GDP by more than 100-fold. High concentrations of Mg2+ promote the dissociation of GDP from G beta gamma X G alpha X GDP, apparently without causing subunit dissociation. The steady-state rate of GTP hydrolysis is strictly correlated with the rate of dissociation of GDP from G alpha under all conditions examined. Thus, there are at least two sites for interaction of Mg2+ with G protein-nucleotide complexes. Furthermore, binding of G beta gamma and GTP gamma S to G alpha is negatively cooperative, while the binding interaction between G beta gamma and GDP is strongly positive.  相似文献   

13.
Signal-transducing guanine-nucleotide-binding regulatory proteins (G proteins) are heterotrimers, composed of the nucleotide-binding alpha subunit and a beta gamma dimer. The influence of beta gamma dimer preparations of the retinal G protein transducin (TD) was studied on formylpeptide-receptor--G-protein interactions in membranes of differentiated HL 60 cells. For this, TD was prepared from bovine rod outer segment (ROS) membranes with either GTP or its analogs, guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and guanosine 5'-[beta gamma-imino]triphosphate (Gpp[NH]p). After removal of free nucleotides, TD beta gamma was separated from TD alpha and its function analyzed. Addition of TD beta gamma isolated from TD prepared with GTP[S] (TD beta gamma GTP[S]) to HL 60 membranes abolished high-affinity binding of fMet-Leu-[3H]Phe (fMet, N-formylmethionine) to its receptor. In contrast, TD beta gamma isolated from TD prepared with GTP (TD beta gamma GTP), boiled TD beta gamma GTP[S] and TD alpha prepared with GTP[S] had no or only slight effects. The inhibitory effect of TD beta gamma GTP[S] on fMet-Leu-[3H]Phe receptor binding was potentiated by GDP at low concentrations but not by GTP[S]. Furthermore, TD beta gamma GTP[S], but not TD beta gamma GTP or TD beta gamma isolated from TD prepared with Gpp[NH]p (TD beta gamma Gpp[NH]p), prevented fMet-Leu-Phe-stimulated binding of [35S]GTP[S] to G proteins in HL 60 membranes, measured in the presence of GDP. When TD beta gamma GTP was incubated with GTP [S] and TD-depleted illuminated ROS membranes, and subsequently separated from the membranes and free GTP[S], this TD beta gamma GTP, similar to TD beta gamma GTP[S], abolished high-affinity binding of fMet-Leu-[3H]Phe to its receptor, fMet-Leu-Phe-stimulated binding of [35S]GTP[S], and fMet-Leu-Phe-stimulated GTP hydrolysis in HL 60 membranes. Inhibition of [35S]GTP[S] binding by TD beta gamma was not seen in the presence of the metabolically stable GDP analog, guanosine 5'-[beta-thio]diphosphate. In order to obtain an insight into the modification of TD beta gamma apparently caused by GTP[S], and into its mechanism of action in HL 60 membranes, TD, TD alpha and TD beta gamma, all prepared in the presence of GTP, were incubated with [35S]GTP[S] and TD-depleted illuminated ROS membranes. Fluorographic analysis of the supernatant proteins revealed 35S labelling of the beta band of the G protein. When apparently thiophosphorylated TD beta gamma was incubated with [3H]GDP in the presence of HL 60 membranes, [3H]GTP[S] was rapidly formed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
P M Guy  J G Koland  R A Cerione 《Biochemistry》1990,29(30):6954-6964
The intrinsic tryptophan fluorescence of the alpha subunit of transducin (alpha T) has been shown to be sensitive to the binding of guanine nucleotides, with the fluorescence being enhanced by as much as 2-fold upon the binding of GTP or nonhydrolyzable GTP analogues [cf. Phillips and Cerione (1988) J. Biol. Chem. 263, 15498-15505]. In this work, we have used these fluorescence changes to analyze the kinetics for the activation (GTP binding)-deactivation (GTPase) cycle of transducin in a well-defined reconstituted phospholipid vesicle system containing purified rhodopsin and the alpha T and beta gamma T subunits of the retinal GTP-binding protein. Both the rate and the extent of the GTP-induced fluorescence enhancement are dependent on [rhodopsin], while only the rate (and not the extent) of the GTP gamma S-induced enhancement is dependent on the levels of rhodopsin. Comparisons of the fluorescence enhancements elicited by GTP gamma S and GTP indicate that the GTP gamma S-induced enhancements directly reflect the GTP gamma S-binding event while the GTP-induced enhancements represent a composite of the GTP-binding and GTP hydrolysis events. At high [rhodopsin], the rates for GTP binding and GTPase are sufficiently different such that the GTP-induced enhancement essentially reflects GTP binding. A fluorescence decay, which always follows the GTP-induced enhancement, directly reflects the GTP hydrolytic event. The rate of the fluorescence decay matches the rate of [32P]Pi production due to [gamma-32P]GTP hydrolysis, and the decay is immediately reversed by rechallenging with GTP. The GTP-induced fluorescence changes (i.e., the enhancement and ensuing decay) could be fit to a simple model describing the activation-deactivation cycle of transducin. The results of this modeling suggest the following points: (1) the dependency of the activation-deactivation cycle on [rhodopsin] can be described by a simple dose response profile; (2) the rate of the rhodopsin-stimulated activation of multiple alpha T(GDP) molecules is dependent on [rhodopsin] and when [alpha T] greater than [rhodopsin], the activation of the total alpha T pool may be limited by the rate of dissociation of rhodopsin from the activated alpha T(GTP) species; and (3) under conditions of optimal rhodopsin-alpha T coupling (i.e., high [rhodopsin]), the cycle is limited by GTP hydrolysis with the rate of Pi release, or any ensuing conformational change, being at least as fast as the hydrolytic event.  相似文献   

15.
Transducin is a member of the family of GTP-binding regulatory proteins that interact with cell surface receptors and that include Gs, Gi, and Go. Kinetic and physical properties of purified bovine transducin were characterized by the following results: (1) Initial rate analysis demonstrates a dissociative-type mechanism for the guanine nucleotide exchange process of transducin in the absence of rhodopsin. A second-order rate constant of kf = (1.7-2.7) X 10(-7) M-1 s-1 was determined for this reaction. (2) Equilibrium binding measurements indicated a Kd of 0.05-0.10 microM for guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding to transducin. (3) Neither the rate nor the extent of GTP gamma S binding was affected in the presence of up to 50 mM Mg2+, as compared to values obtained in the presence of excess ethylenediaminetetraacetic acid. (4) Sucrose density gradient ultracentrifugation gave S20,w values for transducin, its alpha subunit, and its beta gamma subunit complex of 4.23 +/- 0.25, 3.42 +/- 0.37, and 4.04 +/- 0.2, respectively. (5) Incubation of transducin in the presence of up to 20 mM Mg2+ did not alter its sedimentation behavior; however, the presence of guanine nucleotides did produce a shift in transducin's migration in the sucrose gradient. (6) Gel filtration over Sephacryl S-300 indicated that transducin elutes at a Stokes radius of 37.5 A and that transducin's alpha subunit displays a Stokes radius of 24 A. (7) A molecular mass of 68 kDa for transducin is derived from the determined hydrodynamic parameters. These results are compared with properties known for other G proteins, and functional differences between transducin and Gs, Gi, and Go are proposed in relation to the proteins' primary sequences.  相似文献   

16.
ADP-ribosylation of transducin by pertussis toxin   总被引:8,自引:0,他引:8  
Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [32P]ADP-ribosylated by pertussis toxin and [32P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [32P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [32P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma. The amino terminus of T alpha, while it does not contain the pertussis toxin ADP-ribosylation site, appeared critical to its reactivity.  相似文献   

17.
The visual transduction cascade of the retinal rod outer segment responds to light by decreasing membrane current. This ion channel is controlled by cyclic GMP which is, in turn, controlled by its synthesis and degradation by guanylate cyclase and phosphodiesterase, respectively. When light bleaches rhodopsin there is an induced exchange of GTP for GDP bound to the alpha subunit of the retinal G-protein, transducin (T). The T alpha.GTP then removes the inhibitory constraint of a small inhibitory subunit (PDE gamma) on the retinal cGMP phosphodiesterase (PDE). This results in activation of the PDE and in hydrolysis of cGMP. Recently both low and high affinity binding sites have been identified for PDE gamma on the PDE alpha/beta catalytic subunits. The discovery of two PDE gamma subunits, each with different binding affinities, suggests that a tightly regulated shut-off mechanism may be present.  相似文献   

18.
The gamma-subunit of retinal rod-outer-segment phosphodiesterase (PDE-gamma) is a multifunctional protein which interacts directly with both of the catalytic subunits of PDE (PDE alpha/beta) and the alpha-subunit of the retinal G (guanine-nucleotide-binding)-protein transducin alpha (T alpha). We have previously reported that the PDE gamma binds to T alpha at residue nos. 24-45 [Morrison. Rider & Takemoto (1987) FEBS Lett. 222, 266-270]. In vitro this results in inhibition of T alpha GTP/GDP exchange [Morrison, Cunnick, Oppert & Takemoto (1989) J. Biol. Chem. 264, 11671-11681]. We now report that the inhibitory region of PDE gamma for PDE alpha/beta occurs at PDE gamma residues 54-87. This binding results in inhibition of either trypsin-solubilized or membrane-bound PDE alpha/beta. PDE gamma which has been treated with carboxypeptidase Y, removing the C-terminus, does not inhibit PDE alpha/beta, but does inhibit T alpha GTP/GDP exchange. Inhibition by PDE gamma can be removed by T alpha-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) addition to membranes. This results in a displacement of PDE gamma, but not in removal of this subunit from the membrane [Whalen, Bitensky & Takemoto (1990) Biochem. J. 265, 655-658]. These results suggest that low levels of T alpha-GTP[S] can result in displacement of PDE gamma from the membrane in vitro as a GTP[S]-T alpha-PDE gamma complex. Further activation by high levels of T alpha-GTP[S] occurs by displacement of PDE gamma from its inhibitory site on PDE alpha/beta, but not in removal from the membrane.  相似文献   

19.
The GTP-binding protein of Bufo marinus rod outer segments (ROS) is composed of 3 subunits: G alpha, 39,000; G beta, 36,000; and G gamma, approximately 6,500. A stepwise analysis of the GTP hydrolytic cycle (GTP binding, GTP hydrolysis, and GDP release) was facilitated by using purified subunits of the GTP-binding protein. When G alpha and G beta, gamma concentrations were held constant, the initial rate of guanosine-5'-O-(3-thiotriphosphate) (GTP gamma-s) binding to G alpha was dependent upon the amount of bleached rhodopsin present (as illuminated, urea-washed ROS disc membranes). When G alpha and the quantity of these membranes was held constant, the initial rate of GTP gamma-s binding to G alpha was markedly enhanced by increasing the amount of G beta, gamma. G beta preparations (free of G gamma) also stimulated the binding of GTP gamma-s to G alpha to the same extent as G beta, gamma preparations, suggesting that G gamma is not an essential component of the G beta, gamma-dependent stimulation of the rate of GTP gamma-s binding to G alpha. Nonlinear regression analysis revealed a single class of binding sites with an apparent stoichiometry of 1 mol of site/mol of G alpha under optimal binding conditions. Following GTP binding to G alpha, the GTP X G alpha complex dissociates from G beta, gamma which remains primarily bound to the ROS disc membranes. Moreover, while GTP remains in excess, the rates of GTP hydrolysis exhibited saturation in the presence of increasing amounts of G beta, gamma. Nonlinear regression analysis of these data argues against a direct role for G beta, gamma in the hydrolysis of GTP. Thus, both topologic and kinetic data support the concept that GTP hydrolysis is carried out by G alpha alone. After hydrolysis of GTP, the GDP X G alpha complex returned to the ROS disc membrane when G beta, gamma was present on the membrane surface, in the presence and absence of light. Without guanine nucleotides GDP release occurred in the presence of illuminated ROS disc membranes and G beta, gamma. Guanine nucleotides (GTP gamma-s approximately equal to GTP approximately equal to guanosine 5'-(beta, gamma-imido)triphosphate greater than GDP) could effectively displace GDP from G alpha under these conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
In bullfrog (Rana catesbiana) rods the activity of cyclic GMP (cGMP) phosphodiesterase was stimulated 10 times by washing disc membranes with an isotonic, GTP-containing buffer. This stimulation was maintained following hydrolysis of GTP and after removal of guanine nucleotides. At least 60-70% of the inhibitory gamma subunit of cGMP phosphodiesterase (P gamma) was physically released from membranes by these washing procedures. When cGMP phosphodiesterase was activated by a hydrolysis-resistant GTP analogue, P gamma was found in the supernatant complexed with the transducin alpha subunit (T alpha) using three chromatography systems. When GTP was used to activate cGMP phosphodiesterase, P gamma was also found in the supernatant complexed with GDP.T alpha. This complex was also isolated using the same three chromatography systems, indicating that P gamma remained tightly bound to T alpha even after bound GTP was hydrolyzed. Interaction with the beta,gamma subunits of transducin, which remained associated with disc membranes, was required for the release of P gamma from the GDP.T alpha complex, which resulted in the deactivation of active cGMP phosphodiesterase. We conclude that during activation of cGMP phosphodiesterase, P gamma is complexed with T alpha (both GTP and GDP forms) in the supernatant and that, following GTP hydrolysis, beta,gamma subunits of transducin are necessary for the release of P gamma from the complex and the resulting inactivation of cGMP phosphodiesterase in frog photoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号