首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ethylisopropyl-amiloride (EIPA) and phenamil on sodium uptake in renal brush border membrane vesicles from prehypertensive rats of the Milan strain (MHS) and their normotensive controls (MNS) was investigated. In the presence of both a membrane potential and a pH gradient a differential effect of EIPA and phenamil was evidenced between the two rat strains. In the absence of a pH gradient, but in the presence of a membrane potential, EIPA was about two-fold more potent than phenamil in inhibiting sodium transport in both rat strains, excluding the presence of epithelial sodium channels in our BBMV preparations. Taken together these results support the hypothesis that a structurally different Na+/H+ exchanger located on the brush border membrane may be involved in the increased tubular sodium reabsorption observed in vivo in hypertensive rats.  相似文献   

2.
The (Na+,K+)-ATPase activity from the kidney cortex of the Milan hypertensive rat strain (MHS) and the corresponding normotensive control (MNS) was measured both in active solubilized enzyme preparations and in isolated basolateral membrane vesicles. Kinetic analysis of the purified enzyme showed that the Vmax value was significantly higher in MHS rats. The difference between MHS and MNS was not linked to a different number of sodium pumps, but was related to the molecular activity of the enzyme. Using basolateral membrane vesicles, an increased ATP-dependent ouabain-sensitive sodium transport was also demonstrated in MHS rats. These results support the hypothesis that a higher tubular sodium reabsorption may be involved in the pathogenesis of hypertension in this rat strain.  相似文献   

3.
Sodium transport mechanisms were investigated in plasma membrane vesicles prepared from the medullary thick ascending limb of Henle's loop (TALH) of rabbit kidney. The uptake of 22Na into the plasma membrane vesicles was investigated by a rapid filtration technique. Sodium uptake was greatest in the presence of chloride; it was reduced when chloride was replaced by nitrate, gluconate or sulfate. The stimulation of sodium uptake by chloride was seen in the presence of a chloride gradient directed into the vesicle and when the vesicles were equilibrated with NaCl, KCl plus valinomycin so that no chemical or electrical gradients existed across the vesicle (tracer exchange experiments). Furosemide decreased sodium uptake into the vesicles in a dose-dependent manner only in the presence of chloride, with a Ki of around 5 X 10(-6) M. Amiloride, at 2 mM, had no effect on the chloride-dependent sodium uptake. Similarly, potassium removal had no effect on the chloride-dependent sodium uptake and furosemide was an effective inhibitor of sodium uptake in a potassium-free medium. The results show the presence of a furosemide-sensitive sodium-chloride cotransport system in the plasma membranes of the medullary TALH. There is no evidence for a Na+/H+ exchange mechanism or a Na+ -K+ -Cl- cotransport system. The sodium-chloride cotransport system would effect the uphill transport of chloride against its electrochemical potential gradient at the luminal membrane of the cell.  相似文献   

4.
To elucidate the mechanisms underlying the dysfunctions of intestinal absorption induced by antitumor drugs, the effect of pretreatment with mitomycin C on sodium gradient-dependent D-glucose and L-alanine transports was studied in rat brush-border membrane vesicles. 24, 48, 96, or 120 h following a single intravenous injection of mitomycin C, brush-border membrane vesicles were prepared from rat small-intestines. The uptake of D-glucose and L-alanine was shown to be Na+ gradient-dependent even in the case of vesicles obtained from mitomycin C-treated rats, but uptake rates measured at 15 s and magnitude of overshooting effect in uptake of both solutes were decreased in vesicles maximally from 48 h mitomycin C-treated rats. The rate of D-glucose uptake calculated at 15 s recovered to the control level in vesicles prepared at 96 h and 120 h after mitomycin C-treatment, indicating that the effect of mitomycin C on Na+ gradient-dependent D-glucose transport would be fully reversible. Tracer exchange experiments under Na+ and D-glucose equilibrated conditions indicated that the Na+/D-glucose transporters were similarly operative in the vesicles from control and 48 h mitomycin C-treated rats. Rates of 22Na+ uptake measured at 15 s in vesicles from 48 h mitomycin C-treated rats, however, were increased. The increased permeability to Na+ might bring about a more rapid dissipation of the Na+ gradient in these vesicles and this would secondarily cause the decrease in Na+-dependent D-glucose uptake in vesicles from mitomycin C-treated rats.  相似文献   

5.
The Na+/L-glutamate (L-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl-. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl- could specifically activate the Na+-dependent L-glutamate (L-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl- was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. L-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl- did not show any translocation of net charge.  相似文献   

6.
Alkalophilic Bacillus sp. strain C-59 could grow well on an alkaline medium containing K2CO3, as well as Na2CO3, but did not grow on K+-depleted medium. Right-side-out membrane vesicles, energized in the absence of Na+, however, could not take up [14C]methylamine actively, while vesicles equilibrated with 10 mM NaCl actively took up [14C]methylamine. The uptake of [14C]serine was also stimulated by the addition of Na+, and the imposition of a sodium gradient caused transient uptake. These results indicated that an Na+/H+ antiporter was involved in pH homeostasis and generation of an electrochemical sodium gradient in strain C-59 even though a growth requirement for Na+ was not evident. The efflux of 22Na+ from 22Na+-loaded vesicles was more rapid at pH 9.5 than at pH 7 in the presence of an electron donor. On the other hand, vesicles at pH 7 showed more rapid efflux than at pH 9.5 when the antiporter was energized by a valinomycin-mediated K+ diffusion potential (inside negative).  相似文献   

7.
We have investigated the transport characteristics of L-phenylalanyl-L-prolyl-L-alanine in renal brush-border membrane vesicles isolated from Japan Fisher 344 rats. This particular rat strain genetically lacks dipeptidyl peptidase IV. Owing to the absence of this enzyme, the tripeptide was found to be completely resistant to hydrolysis by the renal brush-border membrane vesicles. Uptake of the tripeptide into these membrane vesicles in the presence of an inwardly directed Na+ gradient was slightly greater than in the presence of a K+ gradient, but there was no evidence for active transport. On the contrary, uptake was very rapid in the presence of an inside-alkaline transmembrane pH gradient, and accumulation of the tripeptide inside the vesicles against a concentration gradient could be demonstrated under these conditions. The uptake was drastically reduced by dissipation of the pH gradient. The uptake was stimulated by an inside-negative membrane potential and inhibited by an inside-positive membrane potential. Moreover, the uptake was greater in voltage-clamped membrane vesicles than in control vesicles. Many di- and tripeptides inhibited this pH gradient-stimulated uptake of Phe-Pro-Ala. The apparent dissociation constant for the tripeptide was 48 microM. High performance liquid chromatography analysis of the intravesicular content at the peak of the overshoot revealed that the tripeptide was transported across the membrane almost entirely in the intact form. These data provide the first direct evidence for the presence of an electrogenic tripeptide-proton symport in renal brush-border membranes.  相似文献   

8.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

9.
W Berner  R Kinne    H Murer 《The Biochemical journal》1976,160(3):467-474
Uptake of Pi into brush-border membrane vesicles isolated from rat small intestine was investigated by a rapid filtration technique. The following results were obtained. 1. At pH 7.4 in the presence of a NaCl gradient across the membrane (sodium concentration in the medium higher than sodium concentration in the vesicles), phosphate was taken up by a saturable transport system, which was competitively inhibited by arsenate. Phosphate entered the same osmotically reactive space as D-glucose, which indicates that transport into the vesicles rather than binding to the membranes was determined. 2. The amount of phosphate taken up initially was increased about fourfold by lowering the pH from 7.4 to 6.0.3. When Na+ was replaced by K+, Rb+ or Cs+, the initial rate of uptake decreased at pH 7.4 but was not altered at pH 6.0.4. Experiments with different anions (SCN-,Cl-, SO42-) and with ionophores (valinomycin, monactin) showed that at pH 7.4 phosphate transport in the presence of a Na+ gradient is almost independent of the electrical potential across the vesicle membrane, whereas at pH 6.0 phosphate transport involves the transfer of negative charge. It is concluded that intestinal brush-border membranes contain a Na+/phosphate co-transport system, which catalyses under physiological conditions an electroneutral entry of Pi and Na+ into the intestinal epithelial cell. In contrast with the kidney, probably univalent phosphate and one Na+ ion instead of bivalent phosphate and two Na+ ions are transported together.  相似文献   

10.
Incubation of rat colonic brush-border membrane vesicles with 200 microM S-adenosyl-L-[Me-3H]methionine resulted in the labeling of both membrane phospholipids and proteins. This labeling was decreased approximately 50% by the methylation inhibitor S-adenosyl-L-homocysteine (2 mM). Utilizing the pH-sensitive fluorescent dye, acridine orange, as a means of determining Na+-H+ exchange, S-adenosyl-L-methionine (200 microM) significantly increased sodium-stimulated proton efflux in these vesicles at all concentrations of sodium (2.5-50 mM) tested. Examination of the kinetic parameters for sodium-stimulated proton efflux in the presence and absence of 200 microM S-adenosyl-L-methionine revealed that the methyl donor increased the Vmax for this exchange mechanism (expressed in arbitrary fluorescence units) by approx. 36% but did not influence its Km for sodium. S-Adenosyl-L-homocysteine (2 mM) inhibited S-adenosyl-L-methionine-mediated stimulation of this exchange process. The results demonstrate that methylation of membrane phospholipids and/or proteins can modulate Na+-H+ exchange in rat colonic brush-border membrane vesicles.  相似文献   

11.
Amino acid transport in right-side-out membrane vesicles of Acinetobacter johnsonii 210A was studied. L-Alanine, L-lysine, and L-proline were actively transported when a proton motive force of -76 mV was generated by the oxidation of glucose via the membrane-bound glucose dehydrogenase. Kinetic analysis of amino acid uptake at concentrations of up to 80 microM revealed the presence of a single transport system for each of these amino acids with a Kt of less than 4 microM. The mode of energy coupling to solute uptake was analyzed by imposition of artificial ion diffusion gradients. The uptake of alanine and lysine was driven by a membrane potential and a transmembrane pH gradient. In contrast, the uptake of proline was driven by a membrane potential and a transmembrane chemical gradient of sodium ions. The mechanistic stoichiometry for the solute and the coupling ion was close to unity for all three amino acids. The Na+ dependence of the proline carrier was studied in greater detail. Membrane potential-driven uptake of proline was stimulated by Na+, with a half-maximal Na+ concentration of 26 microM. At Na+ concentrations above 250 microM, proline uptake was strongly inhibited. Generation of a sodium motive force and maintenance of a low internal Na+ concentration are most likely mediated by a sodium/proton antiporter, the presence of which was suggested by the Na(+)-dependent alkalinization of the intravesicular pH in inside-out membrane vesicles. The results show that both H+ and Na+ can function as coupling ions in amino acid transport in Acinetobacter spp.  相似文献   

12.
The shared transport system for uptake of L-cystine and L-lysine was examined in isolated rat renal brush-border membrane vesicles for the ionic requirements for activation of the system. No requirement for sodium was seen for either cystine or lysine influx. However, the efflux of lysine from the vesicle was stimulated by Na+. Therefore, the transport system appears to be asymmetric in its requirement for sodium. Two different divalent cations were used in the membrane isolations which resulted in different responses of cystine uptake to the electrogenic movement of K+ out of the vesicle. Membranes prepared by Mg-aggregation showed no stimulation of cystine influx by the imposition of a transient interior negative potential while vesicles prepared by Ca-aggregation did respond to electrogenic stimulation by an outwardly directed K-diffusion potential in the presence of valinomycin. Lysine influx was stimulated by electrogenic potassium efflux in both Mg-prepared and Ca-prepared membranes. No difference in sodium requirement for cystine influx was seen between the vesicles isolated by different cation-aggregation methods.  相似文献   

13.
Basolateral membrane vesicles from rat jejunal enterocytes, especially purified of brush-border contamination, were used for Na+ uptake. The basolateral membrane vesicles are osmotically active and under our experimental conditions Na+ binding is much lower than transport. An outwardly directed proton gradient stimulates Na+ uptake at both 5 microM and 5 mM concentrations. The proton gradient effect can be inhibited completely by 2 mM amiloride and partially by either FCCP or NH4Cl (NH3 diffusion). Membrane potential effects can be excluded by having valinomycin plus K+ on both sides of the vesicles. These results suggest that there is an Na+/H+ exchanger in the basolateral membrane of rat enterocytes.  相似文献   

14.
The uptake of L-phenylalanine into brush border microvilli vesicles and basolateral plasma membrane vesicles isolated from rat kidney cortex by differential centrifugation and free flow electrophoresis was investigated using filtration techniques. Brush border microvilli but not basolateral plasma membrane vesicles take up L-phenylalanine by an Na+-dependent, saturable transport system. The apparent affinity of the transport system for L-phenylalanine is 6.1 mM at 100 mM Na+ and for Na+ 13mM at 1 mM L-phenylalanine. Reduction of the Na+ concentration reduces the apparent affinity of the transport system for L-phenylalanine but does not alter the maximum velocity. In the presence of an electrochemical potential difference of Na+ across the membrane (etaNao greater than etaNai) the brush border microvilli accumulate transiently L-phenylalanine over the concentration in the incubation medium (overshoot pheomenon). This overshoot and the initial rate of uptake are markedly increased when the intravesicular space is rendered electrically more negative by membrane diffusion potentials induced by the use of highly permeant anions, of valinomycin in the presence of an outwardly directed K+ gradient and of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence of an outward-directed proton gradient. These results indicate that the entry of L-phenylalanine across the brush border membrane into the proximal tubular epithelial cells involves cotransport with Na+ and is dependent on the concentration difference of the amino acid, on the concentration difference of Na+ and on the electrical potential difference. The exit of L-phenylalanine across the basolateral plasma membranes is Na+-independent and probably involves facilitated diffusion.  相似文献   

15.
In order to examine the involvement of insulin in the activity of Na+/glucose cotransporter in rat small intestine, we compared Na(+)-dependent uptake of D-glucose by brush-border membrane vesicles prepared from control, streptozotocin-induced diabetic, insulin-treated diabetic and starved diabetic rats. In four groups, the uptake of D-glucose showed a transient overshoot in the presence of Na+ gradient between medium and vesicles (medium greater than vesicles). The overshoot magnitude was increased (1.8-fold of controls) in diabetic brush border membrane vesicles and recovered to the control level by the treatment of diabetic rats with insulin. In contrast, increased uptake of D-glucose in diabetic rats was not recovered by the starvation of diabetic rats although the blood glucose level was the same as that of controls. Furthermore, we attempted to examine phlorizin binding activities among four groups. Scatchard analysis indicated that phlorizin binding to diabetic brush border membrane vesicles was increased (1.6-fold of controls) without a change of the affinity for phlorizin as compared with controls. Increased binding of phlorizin to diabetic brush border membrane vesicles was also recovered to the control level by the treatment of diabetic rats with insulin, but not by starvation. These results suggested that the increased activity of Na+/glucose cotransporter in diabetic rats was due to the increase of the number of cotransporter and that intestinal cotransporter was physiologically controlled by insulin, but not by blood glucose levels.  相似文献   

16.
The effect of a variety of ions and other solutes on the accumulation of the beta-amino acid, taurine, was examined in rat renal brush-border membrane vesicles. Initial taurine uptake (15 and 30 s) is sodium-dependent with a typical overshoot. This Na+ effect was confirmed by exchange diffusion and gramicidin inhibition of taurine uptake. External K+ or Li+ do not increase taurine accumulation more than Na+-free mannitol, except that the combination of external K+ and Na+ in the presence of nigericin enhances uptake. Of all anions tested, including more permeant (SCN- and NO3-) or less permeant (SO4(2-)), chloride supported taurine accumulation to a significantly greater degree. Preloading vesicles with choline chloride reduced taurine uptake, suggesting that external Cl- stimulates uptake. Since this choline effect could be related to volume change, due to the slow diffusion of choline into vesicles, brush-border membrane vesicles were pre-incubated with LiCl, LiNO3 and LiSO4. Internal LiCl, regardless of the final Na+ anion mixture, reduced initial rate (15 and 60 s) and peak (360 s) taurine uptake. Internal LiNO3 or LiSO4 with external NaCl resulted in similar or higher values of uptake at 15, 60 and 360 s, indicating a role for external Cl- in taurine uptake in addition to Na+ effect. Although uptake by vesicles is greatest at pH 8.0 and inhibited at acidic pH values (pH less than 7.0), an externally directed H+ gradient does not influence uptake. Similarly, amiloride, an inhibitor of the Na+/H+ antiporter, had no influence on taurine accumulation over a wide variety of concentrations or at low Na+ concentrations. Taurine uptake is blocked only by other beta-amino acids and in a competitive fashion. D-Glucose and p-aminohippurate at high concentrations (greater than 10(-3) M) reduce taurine uptake, possibly by competing for sodium ions, although gramicidin added in the presence of D-glucose inhibits taurine uptake even further. These studies more clearly define the nature of the renal beta-amino acid transport system in brush-border vesicles and indicate a role for external Cl- in this uptake system.  相似文献   

17.
Preparations of plasma membrane vesicles were used as a tool to study the properties of the serotonin transporter in the central nervous system. The vesicles were obtained after hypotonic shock of synaptosomes purified from mouse cerebral cortex. Uptake of [3H]serotonin had a Na+-dependent and Na+-independent component. The Na+-dependent uptake was inhibited by classical blockers of serotonin uptake and had a Km of 63-180 nM, and a Vmax of 0.1-0.3 pmol mg-1 s-1 at 77 mM Na+. The uptake required the presence of external Na+ and internal K+. It required a Na+ gradient ([Na+]out greater than [Na+]in) and was stimulated by a gradient of K+ ([K+]in greater than [K+]out). Replacement of Cl- by other anions (NO2-, S2O3-(2-)) reduced uptake appreciably. Gramicidin prevented uptake. Although valinomycin increased uptake somewhat, the membrane potential per se could not drive uptake because no uptake was observed when a membrane potential was generated by the SCN- ion in the absence of internal K+ and with equal [Na+] inside and outside. The increase of uptake as a function of [Na+] indicated a Km for Na+ of 118 mM and a Hill number of 2.0, suggesting a requirement of two sodium ions for serotonin transport. The present results are accommodated very well by the model developed for porcine platelet serotonin transport (Nelson, P. J., and Rudnick, G. (1979) J. Biol. Chem. 254, 10084-10089), except for the number of sodium ions that are required for transport.  相似文献   

18.
Lanthanides (La3+, Pr3+ and Tb3+) inhibit Na+-gradient-dependent Ca2+ influx into synaptic plasma membrane vesicles. 50% inhibition is obtained by 7 microM lanthanide concentration. The inhibition of the Na+-gradient-dependent Ca2+ uptake exhibits competitive kinetic behaviour. The apparent Km of the Ca2+ influx is increased from 50 microM in the absence of lanthanides to 118 microM in the presence of La3+, 170 microM in the presence of Pr3+ and 130 microM in the presence of Tb3+. The maximal reaction velocity is not altered (8.35 nmol Ca2+ transported per mg protein per min in the absence of lanthanides and 8.16 nmol/mg per min in the presence of lanthanides). Lanthanides also inhibited Na+-gradient-dependent Ca2+ efflux from synaptic plasma membrane vesicles that were preloaded with Ca2+ in a Na+-gradient-dependent manner. Introduction of La3+ into the interior of the synaptic plasma membrane vesicles by rapid freezing of the vesicles in liquid N2 and slow thawing had no effect on either Na+-gradient-dependent Ca2+ influx or efflux. Synaptic plasma membrane vesicles can be preloaded with Ca2+ also in an ATP-dependent manner. This form of Ca2+ uptake is also inhibited by La3+ though at higher concentrations than the Na+-gradient-dependent Ca2+ uptake. Na+-gradient-dependent efflux from synaptic plasma membrane vesicles preloaded in an ATP-dependent fashion ('inside-out' vesicles) unlike efflux from synaptic plasma membrane vesicles preloaded in a Na+-gradient-dependent manner was not inhibited by La3+. These findings suggest that the inhibition by La3+ is manifested asymmetrically on both sides of the synaptic plasma membrane. Lanthanides are probably not transported via the Na+-Ca2+ exchanger since Tb3+ entry measured by fluorescence of Tb3+-dipicolinic acid complex formation occurred at high Tb3+ concentrations only (1.5 mM or above) and was not Na+-gradient dependent.  相似文献   

19.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

20.
On the uptake of biotin by the rat renal tubule   总被引:2,自引:0,他引:2  
Little is known of biotin handling by transporting epithelium. Accordingly, we have examined the characteristics of biotin uptake by rat renal tubular epithelium. Renal cortical slices showed concentrative, temperature-sensitive uptake of biotin. Renal brushborder membrane vesicles exhibited an "overshoot" phenomenon with uptake of 1.9 nM biotin in the presence of a 100 mM NaCl gradient. This overshoot was reduced in magnitude with reduction of the sodium gradient to 50 mM. Biocytin significantly reduced uptake by the vesicles. Concentration-dependent studies yielded an apparent transport Km of 200 nM. We conclude that biotin is actively transported by the rat renal proximal tubule by a system which is at least partially Na+ dependent, and shared by biocytin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号