首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The stem cells (SCs) of the corneal epithelium located in the limbal basal layer are the ultimate source to maintain corneal epithelial homeostasis. Like other adult tissue-specific SCs, self renewal and fate decision of limbal SCs are regulated by a specialized in vivo microenvironment, termed "niche". Loss of limbal SCs or dysfunction of the limbal niche renders corneas with a unique clinical disease labeled limbal stem cell deficiency (LSCD). Besides transplantation of autologous or allogeneic limbal SCs or amniotic membrane, a new strategy of treating LSCD is to transplant a bio-engineered graft by expanding limbal SCs ex vivo. Herein, we conduct a critical appraisal of six protocols that have successfully been practiced in treating human patients with LSCD, and identify issues whether niche regulation has been disrupted or maintained during isolation and expansion. Consequently, we propose a future direction that may circumvent the potential pitfalls existing in these conventional protocols by preserving the interaction between limbal SCs and their native niche cells during isolation and expansion. Such an approach may one day help realize considerable promise held by adult SCs in treating a number of diseases.  相似文献   

3.
We describe a procedure to construct an artificial corneal epithelium from cryopreserved limbal stem cells (LSCs) for corneal transplantation. The LSCs were separated from limbal tissue of male goats. The primary LSCs were identified by flow cytometry and were expanded. They were examined for stem cell-relevant properties and cryopreserved in liquid nitrogen. Cryopreserved LSCs were thawed and then transplanted onto human amniotic membrane, framed on a nitrocellulose sheet, to construct corneal epithelium sheets. The artificial corneal epithelium was transplanted into the right eye of pathological models of total limbal stem cell deficiency (LSCD). Then, the effects of reconstruction were evaluated by clinical observation and histological examination. Polymerase chain reaction analysis was used to detect the SRY gene. The data showed that transplantation of cryopreserved LSCs, like fresh LSCs, successfully reconstructed damaged goat corneal surface gradually, but the SRY gene expression from male goat cells could only be detected in the first 2 months after transplantation. The therapeutic effect of the transplantation may be associated with the inhibition of inflammation-related angiogenesis after transplantation of cryopreserved LSCs. This study provides the first line of evidence that cryopreserved LSCs can be used for reconstruction of damaged corneas, presenting a remarkable potential source for transplantation in the treatment of corneal disorders.  相似文献   

4.
5.
6.
We report on a three dimensional (3D)-organotypic culture in vitro for selective growth and expansion of human corneal epithelial stem cells. Limbal corneal explants were cultured on porous collagen sponges submerged in Epilife medium containing 10% fetal bovine serum. The fragments were analyzed by immunohistochemistry for the expression and distribution of a spectrum of corneal epithelium markers: p63, CK-19, CK-3, Ki-67, pan-cytokeratins and vimentin. Early in culture the epithelium began to exfoliate losing its differentiated high-zone layers into the medium, maintaining only basal and few parabasal cells (mostly both p63 and CK-19 positive), which had remained attached to the specimen. After 14 days a new epithelium was formed displaying an increasing prominence of basal and suprabasal cells that, sliding onto the whole explant, showed the tendency to underlay stromal tissue and infiltrate into the underlaying sponge. After 21 days, sponge and fragments were incubated with trypsin-EDTA and dispersed epithelial cells were pipetted on a feeder monolayer of mitomycin-c-treated murine NIH.3T3 fibroblasts. Colonies of undifferentiated epithelial cells (p63, CK-19 and Ki-67 positive, CK-3 negative) were obtained: their cells, if seeded onto a collagen matrix containing embedded primary human corneal fibroblasts as feeder, provided the basic building blocks for reconstructing in vitro a 3D-multilayered corneal epithelium.  相似文献   

7.
8.
Li C  Yin T  Dong N  Dong F  Fang X  Qu YL  Tan Y  Wu H  Liu Z  Li W 《Journal of cellular physiology》2011,226(9):2429-2437
Oxygen concentration has been shown to be crucial in the proliferation and differentiation of various types of cells, while the impact of oxygen tension on the lineage commitment of epithelial cells remains elusive. In this study, we investigated the effect of hypoxia on the differentiation of corneal limbal epithelium using an ex vivo squamous metaplasia model. Under normoxic conditions when exposed to air, the hyperproliferation and abnormal epidermal-like differentiation of human corneal limbal epithelium was induced, whereas when exposed to air under hypoxic conditions, although we observed augmented proliferation, the abnormal differentiation was inhibited. The Notch signaling pathway was activated in hypoxic cultures, whereas the p38 MAPK signaling pathway was downregulated. The addition of Notch inhibitor under hypoxic conditions restored the activation of p38 MAPK and resulted in the recidivation of limbal epithelial cells to epidermal-like differentiation. Moreover, the epidermal-like differentiation of rabbit limbal epithelial cells was also blocked under hypoxic conditions in corneal epithelial cell sheets engineered ex vivo. We concluded that hypoxia can prevent abnormal differentiation while enhancing the proliferation of corneal limbal epithelial cells. Hypoxia coupled with air exposure can be used in the tissue engineering of corneal limbal epithelium.  相似文献   

9.
The cornea is the clear front of the eye and its surface is composed of an epithelium. This is renewed by stem cells located at the limbus, which encircles the periphery of the cornea. These limbal stem cells become lost or deficient in the blinding disease of limbal stem cell deficiency. In this review article, we discuss the historical perspective in managing limbal stem cell deficiency as well as describing the more contemporary treatment options, and in particular the culture and transplantation of human limbal stem cells. This treatment was first proposed 13 years ago and many case series have been presented to date showing promising outcomes of this technique. However, challenges still remain in treating the debilitating disease of limbal stem cell deficiency. Here we discuss some of the questions, which remain to be answered in this field. J. Cell. Physiol. 225: 15–19, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
In this review, we describe a population of adult stem cells that are currently being successfully used in the clinic to treat blinding ocular surface disease, namely limbal epithelial stem cells (LESC). The function and characteristics of LESC and the challenges faced in making use of their therapeutic potential will be examined. The cornea on the front surface of the eye provides our window on the world. The consistency and functionality of the outer-most corneal epithelium is essential for vision. A population of LESC are responsible for replenishing the epithelium throughout life by providing a constant supply of daughter cells that replace those constantly removed from the ocular surface during normal wear and tear and following injury. LESC deficiency results in corneal inflammation, opacification, vascularisation and severe discomfort. The transplantation of cultured LESC is one of only a few examples of the successful use of adult stem cell therapy in patients. The clinical precedence for the use of stem cell therapy and the ready accessibility of a transparent stem cell niche make the cornea a unique model for the study of adult stem cells in health and disease. The authors thank the Special Trustees of Moorfields Eye Hospital (J.T.D.) and the BBSRC (M.N.) for financial support.  相似文献   

11.
12.
The corneal epithelial tissue is a layer of rapidly growing cells that are highly glycolytic and express GLUT1 as the major glucose transporter. It has been shown that GLUT1 in L929 fibroblast cells and other cell lines can be acutely activated by a variety agents. However, the acute regulation of glucose uptake in corneal cells has not been systematically investigated. Therefore, we examined glucose uptake in an immortalized human corneal–limbal epithelial (HCLE) cell line and compared it to glucose uptake in L929 fibroblast cells, a cell line where glucose uptake has been well characterized. We report that the expression of GLUT1 in HCLE cells is 6.6-fold higher than in L929 fibroblast cells, but the HCLE cells have a 25-fold higher basal rate of glucose uptake. Treatment with agents that interfere with mitochondrial metabolism, such as sodium azide and berberine, activate glucose uptake in L929 cells over 3-fold, but have no effect on glucose uptake HCLE cells. Also, agents known to react with thiols, such cinnamaldehyde, phenyarsine oxide and nitroxyl stimulate glucose uptake in L929 cells 3–4-fold, but actually inhibit glucose uptake in HCLE cells. These data suggest that in the fast growing HCLE cells, GLUT1 is expressed at a higher concentration and is already highly activated at basal conditions. These data support a model for the acute activation of GLUT1 that suggests that the activity of GLUT1 is enhanced by the formation of an internal disulfide bond within GLUT1 itself.  相似文献   

13.
We have previously shown that a basic 64-kilodalton (no. 3 in the catalog of Moll et al.) and an acidic 55-kilodalton (no. 12) keratin are characteristic of suprabasal cell layers in cultured rabbit corneal epithelial colonies, and therefore may be regarded as markers for an advanced stage of corneal epithelial differentiation. Moreover, using an AE5 mouse monoclonal antibody, we showed that the 64-kilodalton keratin marker is expressed suprabasally in limbal epithelium but uniformly (basal layer included) in central corneal epithelium, suggesting that corneal basal cells are in a more differentiated state than limbal basal cells. In conjunction with previous data implicating the centripetal migration of corneal epithelial cells, our data support a model of corneal epithelial maturation in which corneal epithelial stem cells are located in the limbus, the transitional zone between the cornea and conjunctiva. In the present study, we analyzed the expression of the 64-kilodalton keratin in developing human corneal epithelium by immunohistochemical staining. At 8 weeks of gestation, the presumptive corneal epithelium is composed of a single layer of cuboidal cells with an overlying periderm; neither of these cell layers is AE5 positive. At 12-13 weeks of gestation, some superficial cells of the three- to four-layered epithelium become AE5 positive, providing the earliest sign of overt corneal epithelial differentiation. At 36 weeks, although the epithelium is morphologically mature (four to six layers), AE5 produces a suprabasal staining pattern, this being in contrast to the adult epithelium which exhibits uniform staining.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Actively proliferating human retinal pigment epithelial (RPE) cells grown in tissue culture possess keratin-containing intermediate filaments that react with a combination of AE1 and AE3 anti-keratin monoclonal antibodies. Antibody reactivity is lost, however, from RPE cells as the cell population ceases to proliferate when it approaches confluence and attains morphological characteristics more similar to those in vivo. In contrast, clone 8.13 anti-keratin antibody stains all cells in the culture at all stages of the growth cycle and cell densities. These findings were reflected in vivo using retinal pigment epithelium taken directly from the eye. Normal non-proliferating RPE cells bound 8.13 antibody to cytoskeletal structures, as judged by indirect immunofluorescence, but did not bind AE1/AE3 antibodies. However, proliferating dedifferentiated RPE cells from the vitreous humor of patients with proliferative vitreoretinopathy possess filaments that bind both AE1/AE3 and 8.13 antibodies. Thus it appears that structures detected by AE1/AE3 antibodies only occur in actively growing RPE cells in vitro and in vivo. Keratins produced by RPE cells were identified using Western blotting. Species with molecular masses of 54 (keratin 7), 52 (keratin 8), 42 (keratin 18), and 40 (keratin 19) kiloDaltons were the most abundant in proliferating cultured cells, but cells isolated directly from the eye were found to lack keratin 7 and 19. Keratin 19 was, however, observed in proliferating RPE cells from some patients with proliferative vitreoretinopathy. The latter findings explain the differential staining observed with AE1/AE3 antibodies in cells in culture and isolated directly from the eye since these antibodies interact primarily with keratin 19 which is absent from non-proliferating RPE cells. In contrast to the presence of keratin-containing intermediate filaments in human RPE cells in vivo, there are apparently no detectable vimentin-containing cytoskeletal structures. However, all RPE cells cultured in vitro develop filaments composed of vimentin which persist in cells that have reached confluence.  相似文献   

15.
Regulation and clinical implications of corneal epithelial stem cells   总被引:7,自引:0,他引:7  
The corneal epithelium is known to have a rapid self-renewing capacity. The major advance in the field of cornead epithelial cell biology in the last decade is the establishment of the location of corneal epithelial stem cells at the limbus, i.e., the junctional zone between the cornea and the conjunctiva. This concept has helped explain several experimental and clinical paradoxes, produced a number of important clinical applications, and spawned many other research studies. This unique enrichment of epithelial stem cells at a site anatomically separated from their transient amplifying cells makes the ocular surface an ideal model to study the regulation of epithelial stem cells. The present review includes data from more recent studies and lays out other areas for future investigation, especially with respect to the role of apoptosis and cytokine dialogue between limbal epithelial stem cells and their stromal microenvironment.Abbreviations EGF epidermal growth factor - EGFR epidermal growth factor receptor - bFGF basic fibroblast growth factor - HGF hepatocyte growth factor - IGF-I insulin-like growth factor type I - IL-1 interleukin 1 - K3 or K12 keratin type 3 or 12 - KGF keratinocyte growth factor - LIF leukemia inhibitory factor - PDGF platelet-derived growth factor - PKC protein kinase C - TGF- transforming growth factor- - TGF- transforming growth factor- - TPA phorbol ester tumor promoting agents  相似文献   

16.
17.
Corneal epithelial stem cells (CESCs) are essential for maintaining the ocular surface. However, the lack of surface markers for CESCs remains a serious obstacle in the identification of CESCs. Previously, we showed that rabbit limbal epithelial side population (rLE-SP) cells exhibited stem cell phenotypes including increased expression of CD61, a marker for mouse hematopoietic stem cells. Here, we demonstrate that nectin-3, an immunoglobulin-like cell-cell adhesion molecule, is highly expressed in rLE-SP cells. Additionally, nectin-3+ cells were significantly enriched among CD61+rLE-SP cells as compared to CD61rLE-SP cells. In mouse bone marrow side population cells, a correlation between expression of nectin-3 and CD61 was also observed. These data strongly suggest that nectin-3 may contribute to the identification of CESCs.  相似文献   

18.
19.
The anterior ocular surface comprises the cornea, conjunctiva and a narrow intermediate region called the limbus. It is widely accepted that the corneal epithelium is maintained by stem cells but different hypotheses propose that the stem cells that maintain the mouse corneal epithelium during normal homeostasis are located either in the basal limbal epithelium or throughout the basal corneal epithelium. There are no specific markers to help test these alternatives and new methods are required to distinguish between them. We observed that KRT5LacZ/− transgenic mice produced rare β-galactosidase (β-gal)-positive radial stripes in the corneal epithelium. These stripes are likely to be clonal lineages of cells derived from stem cells, so they provide a lineage marker for actively proliferating stem cells. The distributions of the β-gal-positive radial stripes suggested they extended centripetally from the limbus, supporting the limbal epithelial stem cell (LESC) hypothesis. Stripe frequency declined between 15 and 30 weeks, which predicts a reduction in stem cell function with age. Pax6+/−, KRT5LacZ/− corneas had small patches rather than stripes, which confirms that corneal maintenance is abnormal in Pax6+/− mice.  相似文献   

20.
Limbal epithelial stem cells play a key role in the maintenance and regulation of the corneal surface. Damage or destruction of these cells results in vascularisation and corneal opacity. Subsequent limbal stem cell transplantation requires an ex vivo expansion step and preserving cells in an undifferentiated state remains vital. In this report we seek to control the phenotype of limbal epithelial stem cells by the novel application of compressed collagen substrates. We have characterised the mechanical and surface properties of conventional collagen gels using shear rheology and scanning electron microscopy. In doing so, we provide evidence to show that compressive load can improve the stiffness of collagen substrates. In addition Western blotting and immunohistochemistry display increased cytokeratin 3 (CK3) protein expression relating to limbal epithelial cell differentiation on stiff collagen substrates. Such gels with an elastic modulus of 2900 Pa supported a significantly higher number of cells than less stiff collagen gels (3 Pa). These findings have substantial influence in the development of ocular surface constructs or experimental models particularly in the fields of stem cell research, tissue engineering and regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号