首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work describes a novel and simple modification of the current microarray format. It reduces the sample/reagent volume to 1 microl and the hybridization time to 500 s. Both 20mer and 80mer oligonucleotide probes and singly labeled 20mer and 80mer targets, representative of the T-cell acute lymphocytic leukemia 1 (TAL1) gene, have been used to elucidate the performance of this hybridization approach. In this format, called shuttle hybridization, a conventional flat glass DNA microarray is integrated with a PMMA microfluidic chip to reduce the sample and reagent consumption to 1/100 of that associated with the conventional format. A serpentine microtrench is designed and fabricated on a PMMA chip using a widely available CO2 laser scriber. The trench spacing is compatible with the inter-spot distance in standard microarrays. The microtrench chip and microarray chip are easily aligned and assembled manually so that the microarray is integrated with a microfluidic channel. Discrete sample plugs are employed in the microchannel for hybridization. Flowing through the microchannel with alternating depths and widths scrambles continuous sample plug into discrete short plugs. These plugs are shuttled back and forth along the channel, sweeping over microarray probes while re-circulation mixing occurs inside the plugs. Integrating the microarrays into the microfluidic channel reduces the DNA-DNA hybridization time from 18 h to 500 s. Additionally, the enhancement of DNA hybridization reaction by the microfluidic device is investigated by determining the coefficient of variation (CV), the growth rate of the hybridization signal and the ability to discriminate single-base mismatch. Detection limit of 19 amol was obtained for shuttle hybridization. A 1 mul target was used to hybridize with an array that can hold 5000 probes.  相似文献   

2.
This work describes a novel and simple modification of the current microarray format. It reduces the sample/reagent volume to 1 μl and the hybridization time to 500 s. Both 20mer and 80mer oligonucleotide probes and singly labeled 20mer and 80mer targets, representative of the T-cell acute lymphocytic leukemia 1 (TAL1) gene, have been used to elucidate the performance of this hybridization approach. In this format, called shuttle hybridization, a conventional flat glass DNA microarray is integrated with a PMMA microfluidic chip to reduce the sample and reagent consumption to 1/100 of that associated with the conventional format. A serpentine microtrench is designed and fabricated on a PMMA chip using a widely available CO2 laser scriber. The trench spacing is compatible with the inter-spot distance in standard microarrays. The microtrench chip and microarray chip are easily aligned and assembled manually so that the microarray is integrated with a microfluidic channel. Discrete sample plugs are employed in the microchannel for hybridization. Flowing through the microchannel with alternating depths and widths scrambles continuous sample plug into discrete short plugs. These plugs are shuttled back and forth along the channel, sweeping over microarray probes while re-circulation mixing occurs inside the plugs. Integrating the microarrays into the microfluidic channel reduces the DNA–DNA hybridization time from 18 h to 500 s. Additionally, the enhancement of DNA hybridization reaction by the microfluidic device is investigated by determining the coefficient of variation (CV), the growth rate of the hybridization signal and the ability to discriminate single-base mismatch. Detection limit of 19 amol was obtained for shuttle hybridization. A 1 μl target was used to hybridize with an array that can hold 5000 probes.  相似文献   

3.
The fabrication quality of microarrays significantly influences the accuracy and reproducibility of microarray experiments. In this report, we present a simple and fast quality control (QC) method for spotted oligonucleotide and cDNA microarrays. It employs a nonspecific electrostatic interaction of colloidal gold nanoparticles with the chemical groups of DNA molecules and other biomolecules immobilized on the microarray surface that bear positive or negative charges. An inexpensive flatbed scanner is used to visualize and quantify the binding of cationic gold particles to the anionic DNA probes on the microarray surface. An image analysis software was designed to assess the various parameters of the array spots including spot intensity, shape and array homogeneity, calculate the overall array quality score, and save the detailed array quality report in an Excel file. The gold staining technique is fast and sensitive. It can be completed in 10 min and detect less than 1% of the probe amount commonly recommended for microarrays. Compared to the current microarray QC method that utilizes the hybridization of probes with short random sequence oligonucleotides labeled with fluorophore, our gold staining method requires less time for the analysis, reduces the reagent cost, and eliminates the need for the expensive laser scanner. Biotechnol. Bioeng. 2009; 102: 960–964. © 2008 Wiley Periodicals, Inc.  相似文献   

4.
微阵列(microarrays)技术及其应用   总被引:5,自引:0,他引:5  
微阵列分为cDNA微阵列和寡聚核苷酸微阵列,微阵列上“印”有大量已知部分序列的DNA探针,微阵列技术就是利用分子杂交原理,使同时被比较的标本(用同位素或荧光素标记)与微阵列杂交,通过检测杂交信号强度及数据处理,把他们转化成不同标本中特异基因的丰度,从而全国比较不同标本的基因表达水平的差异,微阵列技术是一种探索基因组功能的有力手段。  相似文献   

5.
6.
Within a single infected individual, a virus population can have a high genomic variability. In the case of HIV, several mutations can be present even in a small genomic window of 20–30 nucleotides. For diagnostics purposes, it is often needed to resequence genomic subsets where crucial mutations are known to occur. In this article, we address this issue using DNA microarrays and inputs from hybridization thermodynamics. Hybridization signals from multiple probes are analysed, including strong signals from perfectly matching (PM) probes and a large amount of weaker cross-hybridization signals from mismatching (MM) probes. The latter are crucial in the data analysis. Seven coded clinical samples (HIV-1) are analyzed, and the microarray results are in full concordance with Sanger sequencing data. Moreover, the thermodynamic analysis of microarray signals resolves inherent ambiguities in Sanger data of mixed samples and provides additional clinically relevant information. These results show the reliability and added value of DNA microarrays for point-of-care diagnostic purposes.  相似文献   

7.
DNA microarray technology is a powerful tool for getting an overview of gene expression in biological samples. Although the successful use of microarray-based expression analysis was demonstrated in a number of applications, the main problem with this approach is the fact that expression levels deduced from hybridization experiments do not necessarily correlate with RNA concentrations. Moreover oligonucleotide probes corresponding to the same gene can give different hybridization signals. Apart from cross-hybridizations and differential splicing, this could be due to secondary structures of probes or targets. In addition, for low-copy genes, hybridization equilibrium may be reached after hybridization times much longer than the one commonly used (overnight, i.e., 15 h). Thus, hybridization signals could depend on kinetic properties of the probe, which may vary between different oligonucleotide probes immobilized on the same microarray. To validate this hypothesis, on-chip hybridization kinetics and duplex thermostability analysis were performed using oligonucleotide microarrays containing 50-mer probes corresponding to 10 mouse genes. We demonstrate that differences in hybridization kinetics between the probes exist and can influence the interpretation of expression data. In addition, we show that using on-chip hybridization kinetics, quantification of targets is feasible using calibration curves.  相似文献   

8.
9.
Electronic microarray technology is a potential alternative in bacterial detection and identification. However, conditions for bacterial detection by electronic microarray need optimization. Using the NanoChip electronic microarray, we investigated eight marine bacterial species. Based on the 16S rDNA sequences of these species, we constructed primers, reporter probes, and species-specific capture probes. We carried out two separate analyses for longer (533 bp) and shorter (350 and 200 bp) amplified products (amplicons). To detect simultaneously the hybridization signals for the 350- and 200-bp amplicons, we designed a common reporter probe from an overlapping sequence within both fragments. We developed methods to optimize detection of hybridization signals for processing the DNA chips. A matrix analysis was performed for different bacterial species and complementary capture probes on electronic microarrays. Results showed that, when using the longer amplicon, not all bacterial targets hybridized with the complementary capture probes, which was characterized by the presence of false-positive signals. However, with the shorter amplicons, all bacterial species were correctly and completely detected using the constructed complementary capture probes.  相似文献   

10.
11.
As a first step toward building a comprehensive microarray, two low density DNA microarrays were constructed and evaluated for the accurate detection of wastewater pathogens. The first one involved the direct hybridization of wastewater microbial genomic DNA to the functional gene probes while the second involved PCR amplification of 23S ribosomal DNA. The genomic DNA microarray employed 10 functional genes as detection targets. Sensitivity of the microarray was determined to be approximately 1.0 microg of Esherichia coli genomic DNA, or 2 x 10(8) copies of the target gene, and only E. coli DNA was detected with the microarray assay using municipal raw sewage. Sensitivity of the microarray was enhanced approximately by 6 orders of magnitude when the target 23S rRNA gene sequences were PCR amplified with a novel universal primer set and allowed hybridization to 24 species-specific oligonucleotide probes. The minimum detection limit was estimated to be about 100 fg of E. coli genomic DNA or 1.4 x 10(2) copies of the 23S rRNA gene. The PCR amplified DNA microarray successfully detected multiple bacterial pathogens in wastewater. As a parallel study to verify efficiency of the DNA microarray, a real-time quantitative PCR assay was also developed based on the fluorescent TaqMan probes (Applied Biosystems).  相似文献   

12.
Dufva M  Petronis S  Jensen LB  Krag C  Christensen CB 《BioTechniques》2004,37(2):286-92, 294, 296
An agarose film has been proposed as an efficient substrate for producing microarrays. The original film preparation procedure was simplified significantly by grafting the agarose layer directly onto unmodified microscope glass slides instead of aminated glass slides, and the blocking procedure was replaced with a wash in 0.1x standard saline citrate (SSC) and 0.5% sodium dodecyl sulfate (SDS) without decreasing the performance of the produced microarrays. Characterization of the grafted agarose film using atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that the agarose film had a 10-fold increase in surface roughness compared to glass and that the interior of the agarose film was porous, with pore sizes between 100-500 nm. A comparison of hybridization on aldehyde-activated agarose-coated microarray slides and commercial amino-reactive microarray slides showed that aldehyde-activated agarose-coated slides had the highest signal-to-noise ratio of 850, suggesting that the aldehyde-activated agarose microarray slides are suitable in applications where analytes have a wide concentration range. By immobilizing the DNA probes using ultraviolet (UV) light, the signal-to-noise ratio was further increased to 3000 on the agarose microarray slides. The specificity of the UV cross-linked DNA probes was demonstrated using 21 and 25 bp long capture probes, enabling discrimination of target molecules differing in only one base.  相似文献   

13.
14.
15.
S Hamels  J L Gala  S Dufour  P Vannuffel  N Zammatteo  J Remacle 《BioTechniques》2001,31(6):1364-6, 1368, 1370-2
We propose the use of DNA microarray for the discrimination of homologous products after a single PCR amplification with consensus primers. The method was applied to Staphylococcus identification. The femA nucleotide sequences, which are phylogenetically conserved among the staphylococci, were first amplified using a consensus primer pair together with the mecA sequence, a molecular marker for methicillin resistance. Products were then identified on a glass array. The microarray contained five selective DNA capture probes for the simultaneous and differential identification of the five most clinically relevant staphylococcal species (S. aureus, S. epidermidis, S. haemolyticus, S. hominis, and S. saprophyticus), while a consensus capture probe could detect all femA sequences, allowing the identification of the genus Staphylococcus. The mecA sequence hybridized to a specific capture probe. The identification was univocal because only a single capture probe had to be present for each sequence to be identified. The hybridization and identification processes were completed in less than 2 h. Current results demonstrate that low-density microarrays are powerful multigenotypic post-PCR analyzers and could compete with conventional bacteria identification.  相似文献   

16.
17.
Visual DNA microarrays, based on gold label silver stain (GLSS) and coupled with multiplex asymmetrical PCR, were developed for simultaneous, sensitive and specific detection of Ureaplasma urealyticum and Chlamydia trachomatis. 5'-end-amino-modified oligonucleotides, which were immobilized on glass surface, acted as capturing probes that were designed to bind complementary biotinylated targets DNA. The gold-conjugated streptavidins were introduced to the microarray for specific binding to biotin. The black image of microarray spots, resulting from the precipitation of silver onto nanogold particles bound to streptavidins, were used to detect biotinylated targets DNA visually or with a visible light scanner. Multiplex asymmetrical PCR of U. urealyticum, C. trachomatis and Bacillus subtilis (used as positive control) was performed to prepare abundant biotinylated single-stranded targets DNA, which affected detection efficiency and sensitivity of hybridization on microarray. Plenty of clinical samples of U. urealyticum and C. trachomatis from infected patients were tested using home-made DNA microarrays. For its high sensitivity, good specificity, simplicity, cheapness and speed, the present visual gene-detecting technique has potential applications in clinical fields.  相似文献   

18.
A microfluidic microarray device, which has been developed for parallel DNA detection, is now further optimized for more rapid and sensitive DNA detection and for the single-base-pair discrimination of two fungal pathogenic PCR products. Two poly(dimethylsiloxane) (PDMS)-based microfluidic chips consist of radial and spiral microchannels in which flexible probe creation and convenient sample delivery have been achieved by centrifugal pumping. The microarray hybridizations occurred at the cross sections within the spiral channels intersecting the preprinted radial probe lines. The centrifugal pumping method showed advantages over the vacuum suction method in terms of parallel solution delivery and less signal variations between replicate samples. The effect of microchannel depth was studied, and hybridization time is predictable at a certain rotation speed. Cy5 dye labels were proved to show much higher hybridization efficiency as well as less photobleaching effect as compared with the fluorescein dye labels used in our previous work. With these optimized conditions, the method was applied to the detection of three fungal pathogenic polymerase chain reaction (PCR) products with a sample load of 0.2 ng (in 1 μl). Furthermore, the single-base-pair discrimination between the PCR products of two relevant Botrytis species (B. cinerea and B. squamosa) was achieved in a duration as short as 3 min.  相似文献   

19.
A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.  相似文献   

20.
To determine the potential of DNA array technology for assessing functional gene diversity and distribution, a prototype microarray was constructed with genes involved in nitrogen cycling: nitrite reductase (nirS and nirK) genes, ammonia mono-oxygenase (amoA) genes, and methane mono-oxygenase (pmoA) genes from pure cultures and those cloned from marine sediments. In experiments using glass slide microarrays, genes possessing less than 80 to 85% sequence identity were differentiated under hybridization conditions of high stringency (65 degrees C). The detection limit for nirS genes was approximately 1 ng of pure genomic DNA and 25 ng of soil community DNA using our optimized protocol. A linear quantitative relationship (r(2) = 0.89 to 0.94) was observed between signal intensity and target DNA concentration over a range of 1 to 100 ng for genomic DNA (or genomic DNA equivalent) from both pure cultures and mixed communities. However, the quantitative capacity of microarrays for measuring the relative abundance of targeted genes in complex environmental samples is less clear due to divergent target sequences. Sequence divergence and probe length affected hybridization signal intensity within a certain range of sequence identity and size, respectively. This prototype functional gene array did reveal differences in the apparent distribution of nir and amoA and pmoA gene families in sediment and soil samples. Our results indicate that glass-based microarray hybridization has potential as a tool for revealing functional gene composition in natural microbial communities; however, more work is needed to improve sensitivity and quantitation and to understand the associated issue of specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号