共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fourteen isolates of Aspergillus parasiticus and 2 isolates of Aspergillus flavus isolated from the mealybug Saccharicoccus sacchari were analyzed for production of aflatoxins B1, B2, G1, and G2 in liquid culture over a 20-day period. Twelve Aspergillus isolates including 11 A. parasiticus and 1 A. flavus produced aflatoxins which were extracted from both the mycelium and culture filtrate. Aflatoxin production was detected at day 3 and was detected continually for up to day 20. Aflatoxin B1 production was greatest between 7 and 10 days and significantly higher quantities were produced by A. flavus compared to A. parasiticus. Aflatoxin production was not a stable trait in 1 A. parasiticus isolate passaged 50 times on agar. In addition to loss of aflatoxin production, an associated loss in sporulation ability was also observed in this passaged isolate, although it did maintain pathogenicity against S. sacchari. An aflatoxin B1 concentration of 0.16 micrograms/mealybug (14.2 micrograms/g wet wt) was detected within the tissues of infected mealybugs 7 days after inoculation. In conclusion, the ability of Aspergillus isolates to produce aflatoxins was not essential to the entomopathogenic activity of this fungus against its host S. sacchari. 相似文献
3.
4.
Summary Woodsmoke delayed aflatoxius B1 and G1 release and significantly exerted inhibitory effects on the toxins production by a toxigenic Asperigillus flavus. The fungistatic efficiency of the woodsmoke increased with reduced moisture content in fish. 相似文献
5.
Three toxins were recovered from rice and wheat cultures of an isolate of Aspergillus flavus. The toxins were present simultaneously in the cultures after one or two weeks incubation and were identified as aflatoxin, cyclopiazonic acid and aflatrem, a recently identified indole-mevalonate metabolite.No endorsements are implied herein. 相似文献
6.
An aflatoxin-producing isolate of Aspergillus flavus was found to be a consistent producer of aflatoxin on all substrates which supported the growth of the mold. In competition with six other selected molds, this isolate was dominant except with one species of Penicillium. Aflatoxin production was parallel to the extent of A. flavus growth whether effected by substrate or competition. 相似文献
7.
8.
9.
Nagamine K Murashima K Kato T Shimoi H Ito K 《Bioscience, biotechnology, and biochemistry》2003,67(10):2194-2202
Aspergillus kawachii produces two kinds of alpha-amylase, one is an acid-unstable alpha-amylase and the other is an acid-stable alpha-amylase. Because the quality of the shochu depends strongly on the activities of the alpha-amylases, the culture conditions under which these alpha-amylases are produced were examined. In liquid culture, acid-unstable alpha-amylase was produced abundantly, but, acid-stable alpha-amylase was not produced. The acid-unstable alpha-amylase was produced significantly when glycerol or glucose was used as a carbon source, similarly to the use of inducers such as starch or maltose. In liquid culture, A. kawachii assimilated starch at pH 3.0, but no alpha-amylase activity was recognized in the medium. Instead, the alpha-amylase was found to be trapped in the cell wall. The trapped form was identified as acid-unstable alpha-amylase. Usually, acid-unstable alpha-amylase is unstable at pH 3.0, so its stability appeared to be due to its immobilization in the cell wall. In solid-state culture, both kinds of alpha-amylase were produced. The production of acid-stable alpha-amylase seems to be solid-state culture-specific and was affected by the moisture content in the solid medium. 相似文献
10.
11.
12.
Aspergillus flavus isolated from naturally infected leaf-eating caterpillar (Opisina arenosella W.), lace bug (Stephanitis typica D.) and plant hopper (Proutista moesta Westwood), insect pests of the coconut palm, were tested for aflatoxin (AT) production by employing various media formulations.
These A. flavus isolates were earlier found to be entomopathogenic in laboratory bioassays. A laboratory contaminant and four standard aflatoxigenic
A. flavus isolates were also included in this study as reference strains. All A. flavus isolates were tested on seven AT detection media: coconut extract agar, coconut extract-sodium desoxycholate agar, coconut
extract-ascorbic acid agar, coconut extract-Czapek Dox agar, coconut extract-milk powder agar, 10% commercial coconut milk
powder agar (CCMPA) and 20% CCMPA. Only two isolates of A. flavus, originally isolated from O. arenosella and P. moesta, produced ATs. AT production was detected within 48 h of incubation and was detected continually up to 1 month. These AT-producing
A. flavus isolates also produced bright yellow pigmentation in the medium. Of all the seven media used for AT detection, CCMPA (10%)
was found to be the best one, followed by 20% CCMPA, for direct and rapid AT detection. AT production was not necessary for
pathogenicity in the insects.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
13.
14.
Aflatoxin formation by Aspergillus flavus 总被引:19,自引:0,他引:19
15.
P J Cotty T E Cleveland R L Brown J E Mellon 《Applied and environmental microbiology》1990,56(12):3885-3887
Pectinase production by Aspergillus flavus was determined by measuring clear zones formed around colonies stained with ruthenium red. Several isolates produced red zones instead of clear zones. Red zones were reproduced with pectinesterase and correlated with absence of specific polygalacturonases. Of 87 isolates tested, 15 produced red zones. 相似文献
16.
17.
Summary The effect of temperature on formation of aflatoxin on solid substrate (rice) byAspergillus flavus NRRL 2999 has been studied in some detail. The optimum temperature for production of both aflatoxin B1 and G1 under the conditions employed is 28° C. Comparable yields of B1 were obtained at 32° C, but considerably less G1 was produced at this temperature. Both B1 and G1 were found in lesser amounts at temperatures above 32° C, and the aflatoxin content of rice incubated at 37° C was low (300–700 ppb) even though growth was good.Reducing the temperature from 28° to 15° C resulted in progressively less aflatoxin, but 100 ppb of B1 was detected in cultures incubated 3 weeks at 11° C. No aflatoxin was produced at 8° C.The ratio of the four aflatoxins is affected by temperature. At the lower temperatures, essentially equal amounts of aflatoxin B1 and G1 were produced, whereas at 28° C, approximately four times as much B1 was detected as G1. At the higher temperatures, relatively less G was formed, until at 37° C, less than 10 ppb was detected.This is a laboratory of the Northern Utilization Research and Development Division, Agricultural Research Service, U.S. Department of Agriculture. 相似文献
18.
19.
The influence of six fungitoxicants on growth and aflatoxin production by Aspergillus flavus was tested in liquid SMKY medium at two concentrations, viz . 0.1 and 0.5%. Thiram completely inhibited the aflatoxin production at 0.5% concentration. Other fungitoxicants showing more than 60% inhibition were bavistin and daconil. Vitavax (0.1%) and agrosan GN (0.1 and 0.5%) stimulated the growth of fungus and aflatoxin elaboration after 7 d of incubation. Dithane M-45 moderately inhibited aflatoxin synthesis. Treatment with fungitoxicants also alters the ratio of B1 and G1 . 相似文献
20.