首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain ganglioside patterns of vertebrates   总被引:6,自引:6,他引:0  
Abstract— The ganglioside content in brains of representatives of six vertebrate classes (lamprey, ray, sheat-fish, carp, frog, triton, tortoise, hen, pigeon, rabbit, rat and monkey) was determined. In most cases a correlation was found between the level of nervous organization and the ganglioside content of brain. In fish and amphibian brain ganglioside concentration is half to one third that in mammalian brain. Ganglioside composition of higher vertebrate brains (mammals, birds and reptiles) has many similar features. Four main gangliosides with 1-3 NANA residues in their molecules–G1 * * Nomenclature of Korey and Gonatas (1963 ): G1 trisialyl-hexosaminyl-trihexosyl-ceramide; G2 and G3, disialyl-hexosaminyl-trihexosyl-ceramides; G4 monosialyl-hexosaminyl-trihexosyl-ceramide.
, G2, G3 and G4–constitute 80-90 per cent of total ganglioside NANA. Fractions G2a ? ? Go, tetrasialyl-hexosaminyl-trihexosyl-ceramide; G2a disialyl-hexosaminyl-dihexosyl-ceramide; G5, monosialyl-hexosaminyl-dihexosyl-ceramide.
Go and G5 are present in much lesser amounts. Species peculiarities in distribution of NANA among different fractions were noted. The brain gangliosides of lower vertebrates–fish and amphibia–are unusual in having a high proportion of polysialogangliosides, containing 4 and 5 NANA residues, and a lower content of monosialogangliosides. In ray brain a considerable part of gangliosides has a reduced carbohydrate chain.  相似文献   

2.
Immunochemical studies of isolated human brain ganglioside components   总被引:3,自引:1,他引:2  
Abstract— Gangliosides G1 to G5 were isolated from human brain by means of TLC and tested with respect to their specificity to antisera against normal brain and Tay-Sachs brain gangliosides by agar double diffusion analysis. Gangliosides G2 and G4 gave precipitation reactions with antisera to normal human gangliosides (NHG) while only ganglioside G6 reacted with antisera to Tay-Sachs gangliosides (TSG). Additional specificity information was also obtained by use of the enzyme neuraminidase for the removal of specific sialic acid (NANA) residues. It was concluded from these data that the specificity of the anti-NHG antibodies is determined by the presence of a galactose (β1, 3) N-acetyl galactos-amine–while that of anti-TSG antibodies is due to a N-acetyl galactosamine (β1, 4) galactose-end sequence. By means of natural compounds of known structure it was found that both the sequence of carbohydrate residues and position of NANA residues in the molecule played a critical role in the formation of precipitation bands with NHG-antisera. This information was utilized to distinguish one isomeric form of disialoganglioside from another, i.e. G2 from G3 and to confirm the structure of the trisialoganglioside, G1. The immunochemical method appears to be a useful one for elucidating structural differences in ganglioside molecules.  相似文献   

3.
Gangliosides were isolated from human brain myelin, oligodendroglia, and neurons. Quantitative analysis revealed the following ganglioside contents: myelin, 2.0; neurons, 1.3; and oligodendroglia, 0.35 μg ganglioside sialic acid per mg protein. Myclin had a relatively simple ganglioside pattern with GM4 and GM1 as the predominant ganglioside species. The ganglioside pattern of oligodendroglia was quite complex and it resembled that of whole white matter rather than that of myelin. A high concentration of GM4 was found in oligodendroglial fractions in addition to GM1, GD1a, GD1b, and GT1b. The usually- minor brain gangliosides GM3, GM2, and GM3 were also enriched in oligodendroglia. The neuronal ganglioside pattern was generally similar to the pattern of whole gray matter. Both neurons and whole gray matter contained very low amounts of GM4. These results indicate that GM4 is specifically localized in myelin and oligodendroglia of the CNS. Evidence is also presented that myelin, but not oligodendroglia, is the major reservoir of human white matter GM1 and GM4.  相似文献   

4.
Improved resolution of complex brain ganglioside mixtures was achieved by high-performance thin-layer chromatography. The percentage distribution of individual gangliosides was then determined by direct densitometric seanning, employing a transmittance mode, of the resorcinol-positive spots on the plate. As little as 90 pmol (29 ng) of lipid-bound sialic acid could be detected with a good signal-to-noise ratio. A linear detector response was observed up to 3.0 μg of lipid-bound sialic acid. The brain white matter ganglioside patterns of eight animal species, including human, chimpanzee, monkey, chicken, bovine, sheep, and pig, were examined in detail. In addition, human brain gray matter, rat cerebral, rat brain gray matter, and rat cerebellar ganglioside patterns were also studied. Ganglioside GM4 (G7) was found to be one of the major components in primate and chicken brain white matter, but it represented only a minor ganglioside in other species. Other major gangliosides in all brain samples studied were GM1, GD1a, GD1b, and GT1b. GM1 was more abundant in white matter than in gray matter. GT1a, a recently discovered ganglioside species, was found in all species examined, but was most abundant in the rat cerebellum. The latter source also contained high proportions of GT1b and GQ1b.  相似文献   

5.
The lipid composition of axons from bovine brain   总被引:7,自引:4,他引:3  
Abstract— Bovine axons derived from myelinated CNS axons were found to have 13.5% lipid. This lipid was composed of 20.1% cholesterol, 20.1% galactolipid, 14.6% ethanolarhine phosphatides (56.4% in the plasmalogen form), 18.3% choline phosphatides (10.0% in the plasmalogen form), 9.3% sphingomyelin, 5.6% phosphatidyl serine and 3.4% phosphatidyl inositol. The bovine axons had 0.33 μg ganglioside NeuNAc/mg dry weight. The axon gangliosides were found to contain the four major types of bovine gangliosides, as well as gangliosides GM2 and GD3. The latter two amounted to 20.9 and 15.8 mole per cent respectively, of total gangliosides. On a molar basis, about one half of the gangliosides were monosialogangliosides, with a decreased contribution by gangliosides GT1 and GD1b relative to ganglioside distributions which have been reported for most other CNS components. The relationship of the bovine axonal lipid composition to bovine white matter and its constituents, as well as to other CNS and PNS axonal preparations is discussed.  相似文献   

6.
Shedding of immunosuppressive gangliosides is an important characteristic of both experimental and human tumors. Using a medulloblastoma cell line, Daoy, with a very high ganglioside expression (141 ± 13 nmol/108cells) and a well-characterized ganglioside complement, we have now studied ganglioside shedding by human brain tumor cells. Shedding of gangliosides, quantified by metabolic radiolabeling, was significant (169 pmol/108cells/h) and was generalized with respect to the major ganglioside carbohydrate structures (GM2, GM3, and GD1a). For each ganglioside, however, shedding was selective for ceramide structures containing shorter fatty acyl chains. Rapid and ceramide-selective shedding was confirmed in two additional human medulloblastoma cell lines, D341 Med and D283 Med (112 and 59 pmol/108cells/h). Significant ganglioside shedding is therefore a common characteristic of human medulloblastoma cells and may influence the biological behavior of this tumor, in view of immunosuppressive and other biological properties of shed gangliosides.  相似文献   

7.
The influence of different gangliosides (GM1, GD1a, GT1b) on the fluidity and surface dynamics of phosphatidylcholine small unilamellar vesicles was studied by electron paramagnetic resonance. 5-and 16-nitroxystearic acid, sounding respectively the region close to the surface and that close to the hydrophobic core of the vesicle, were employed as spin-label probes. The signals released by 5-nitroxystearic acid showed that the presence of gangliosides reduced the mobility of the hydrocarbon chains around the probe. The effect increased by increasing ganglioside concentration, and diminished from GM1 to GD1a and GT1b. The decrease of membrane fluidity was also monitored by the 16-nitroxystearic acid probe. On addition of Ca2+ the fluidity of ganglioside-containing vesicles (as signalled by the 5-nitroxystearic acid probe) promptly decreased, thereafter returning slowly to the original value. It is suggested that gangliosides cause strong side-side head group interactions on the bilayer surface -between ganglioside oligosaccharide chains and between ganglioside and phosphatidylcholine polar portions - which lead the lipid chains to assembly in a more rigid fashion. The influence of Ca2+ is interpreted as due to lateral phase separation in the vesicle membrane. This phenomenon can be related to the formation or stabilization of ganglioside clusters on the vesicle surface.  相似文献   

8.
Formation and turnover of myelin ganglioside   总被引:7,自引:6,他引:1  
—In young adult rats, the formation and turnover of GM1-ganglioside in myelin were compared with the formation and turnover of GM1-ganglioside in whole brain and of total lipids in whole brain and myelin, after injection of d-[1-14C]glucosamine. During the first 24 hr after injection, the specific activity of GM1-ganglioside in myelin was less than 25 per cent of that of GM1-ganglioside in whole brain. The specific activity of ganglioside in whole brain was maximal at 24 hr and then declined steadily during the next 3 months, whereas the specific activity of GM1-ganglioside in myelin continued to increase and did not reach a peak until about one month after injection, by which time its specific activity had increased five-fold. Consequently, the specific activity of GM1-ganglioside in myelin was 50 per cent higher than ganglioside in whole brain after one month. These differences in the formation and turnover of GM1-ganglioside in myelin and of whole brain are similar to those of other lipids of myelin and of whole brain, indicating that the metabolic activity of myelin ganglioside is similar to myelin lipids, but differs from whole brain lipids or whole brain gangliosides. These data provide additional evidence that ganglioside in myelin is an intrinsic constituent of the myelin sheath. GT1 (G1), GD1b, (G2), GD1a (G3), GM1 (G4), GM2 (G5), GM3 (G6).  相似文献   

9.
Melanoma among Japanese is rare, and differs in its clinical and histological characteristics from that found in Caucasians. In this study, the ganglioside expression of melanoma specimens obtained from Japanese was determined and compared with previously published data on Caucasians. The ganglioside composition of 25 biopsy melanoma specimens, including 13 primary and 12 metastatic lesions, was studied using thin layer chromatography. Four gangliosides (GM3, GD3, GM2, GD2) were most commonly expressed in melanomas in Japanese. The expression of gangliosides was quite variable in both primary and metastatic melanomas as seen in previous reports. No significant differences were observed between gangliosides from primary and metastatic sites. A new type of ganglioside expression, in which GM3 was nearly the only ganglioside (>95%), was found in metastatic tumors from two Japanese patients with acral lentiginous melanoma (ALM), which is the most common clinical and histopathological type of melanoma among Japanese but is very unusual among Caucasians. The patterns of expression were similar to those in Caucasians except for the detection of a “new” pattern.  相似文献   

10.
Sialidases cleave off sialic acid residues from the oligosaccharide chain of gangliosides in their catabolic pathway while sialyltransferases transfer sialic acid to the growing oligosaccharide moiety in ganglioside biosynthesis. Ganglioside GM3 is a common substrate for both types of enzymes, for sialidase acting on ganglioside GM3 as well as for ganglioside GD3 synthase. Therefore, it is possible that both enzymes recognize similar structural features of the sialic acid moiety of their common substrate, ganglioside GM3. Based on this idea we used a variety of GM3 derivatives as glycolipid substrates for a bacterial sialidase (Clostridium perfringens) and for GD3 synthase (of rat liver Golgi vesicles). This study revealed that those GM3 derivatives that were poorly degraded by sialidase also were hardly recognized by sialyltransferase (GD3 synthase). This may indicate similarities in the substrate binding sites of these enzymes.  相似文献   

11.
New fluorophore-labelled GM1 gangliosides have been synthesised and spectroscopically characterised. Spectroscopically different BODIPY groups were covalently linked, specifically to either the polar or the hydrophobic part of the ganglioside molecule. The absorption and fluorescence spectroscopic properties are reported for 564/571-BODIPY- and 581/591-BODIPY-labelled GM1. Each of the different BODIPY groups is highly fluorescent and depolarisation experiments provide molecular information about the spatial distribution in lipid bilayers, as well as order and dynamics. From experiments performed on two spectroscopically different BODIPY:s, specific interactions can be revealed by monitoring the rate/efficiency of donor-acceptor electronic energy transfer. Systems of particular interest for applying these probes are e.g. mixtures of lipids, and peptides/proteins interacting with lipid membranes.  相似文献   

12.
—Gangliosides and allied neutral glycosylceramides were isolated from human infant (2-24 months of age) cerebral cortex and white matter. The individual glycolipids were separated quantitatively by a combination of column and thin-layer chromatographic methods on silica gel, DEAE-cellulose and Sephadex G-25. In cerebral cortex GD1a and GM1 were the major fractions and constituted more than 70 per cent of the total gangliosides. The concentrations of neutral glycolipids, except for galactosylceramides, were very low: lactosylceramide and glucosylceramide comprised 30 and 5 nmol/g wet weight, respectively. In white matter their concentrations were 10 times higher. The ganglioside concentration was only 50 per cent of that in cerebral cortex: the difference was accounted for mainly by the much lower content of the major di- and trisialogangliosides. Stearic acid was the predominant fatty acid of all brain gangliosides. GM3, and GD3 had a considerable content of the very long-chain fatty acids, C22-C24, particularly in the white matter. Glucosylceramide and lactosylceramide had almost identical fatty acid patterns between each other in cerebral cortex and white matter. In the cerebral cortex stearic acid and in the white matter the very long-chain acids predominated. d20:1 Sphingosine comprised more than 20 per cent of total sphingosine in all the gangliosides of the Gl- and G2-series. GM3, and GD3 like lactosylceramide contained significantly less of d20:1 sphingosine. The findings suggest the existence of separate compartments for the biosynthesis of the gangliosides. Glucosylceramides and lactosylceramides of white matter have the same ceramide composition as the galactosylceramides with normal fatty acids and are thus unlikely to be intermediates in the metabolism of the major brain gangliosides which have a completely different fatty acid composition.  相似文献   

13.
EFFECT OF LIGHT ON GANGLIOSIDES FROM CALF RETINA AND PHOTORECEPTORS   总被引:5,自引:5,他引:0  
—The gangliosides of the whole calf retina and the rod outer segments have been analysed. This has been done in two functional states: before and after stimulation by light. After exposure to light no statistically significant change in the gangliosides of the whole retina was observed, but a 40 per cent increase in concentration was found in the rod outer segments. This difference was apparent only when using the same batch of rod outer segments. The major ganglioside in the whole calf retina is GD3 which accounts for 46 per cent of the total. Three other gangliosides GD1a, GD1b and GT1 are quantitatively important, each being between 12 and 16 per cent. GQ1, GM1, and GM3 are minor constituents. In contrast to the chicken retina, GM2 was not detected. The ganglioside N-acetylneuraminic acid of the rod outer segments accounts for only 1 per cent of the gangliosides of the whole retina. The composition of the gangliosides in the rod outer segments is essentially the same as that of the whole retina. No difference in the relative proportion of the gangliosides of either the rod outer segments or the whole retina was observed after exposure to light.  相似文献   

14.
Platelet interaction with gangliosides GD3, GM3, GM1, GD1a and GT1b has been investigated. These gangliosides were previously identified in the vessel wall and ganglioside GD3 was found to accumulate selectively in the intima of atherosclerotic vessels. Gangliosides were adsorbed to plastic and incubated with 51Cr-labeled platelets. The adhesion of gel-filtered platelets to ganglioside GD3 was 3–4-times higher than to other immobilized gangliosides and to albumin-treated plastic. As was shown by scanning electron microscopy, GD3 stimulated intensive spreading of adherent platelets and formation of surface-bound aggregates, while only single unspread platelets were present on the surfaces coated with other gangliosides. GD3 isolated from milk and from human aorta possess the same stimulating activity. Platelet adhesion to GD3 decreased significantly in the presence of the stable prostacyclin analogue, carbacyclin.  相似文献   

15.
The ganglioside compositions of the chick optic tectum and aggregating tectal cell cultures were examined. Both showed similar trends in changes in ganglioside patterns during development. GD and GD1b were the predominant gangliosides early in development, while GD1a and several other multisialogan gliosides increased in relative amounts with increasing age in vivo and in vitro. Four gangliosides were present early in development which have not previously been reported. These gangliosides are not present at later developmental times suggesting a possible role for them during the critical early stages of nervous tissue differentiation. Some differences were noted when comparing in vivo versus in vitro ganglioside patterns; these differences may possibly be due to the lack of normal retinotectal connections in the cultures. Cytochemical studies on the localization of the presumed cholera toxin-peroxidase binding site GM1 showed conjugate binding correlates with increasing levels of GM1 in the cultures. In older cultures, the conjugate was uniformly localized on all cells and processes in the aggregates. The conjugate also bound to synaptic membranes and intensely stained the synaptic cleft. This latter observation suggests an enrichment of GM1 in the synaptic cleft region.  相似文献   

16.
Shedding of neuroblastoma gangliosides is positively correlated with tumour progression in patients with neuroblastoma. In assessing the biological activity of these ganglioside molecules, we recently found that total human neuroblastoma gangliosides inhibit cellular immune responses. Here, we have studied the major neuroblastoma ganglioside, GD2. GD2 was purified by high performance liquid chromatography and structurally characterized by mass spectrometry. Immunoregulatory effects of GD2 in vivo were then determined in an established murine model. GD2 significantly downregulated the local cellular immune response to an allogeneic cell challenge; the usual increase in mass of the lymph node draining the injection site was reduced by 88%, from 1.52 to 0.19 mg (control versus GD2-treated mice;p<0.01). In parallel, lymphocyte recovery from each node was also reduced from 2.4 to 1.2×106 cells, and lymphocyte DNA synthesis was reduced to half of the control level. These results show that certain shed tumour gangliosides, such as GD2, function as intercellular signalling molecules, downregulate the cellular immune response, and may thereby enhance tumour formation and progression.  相似文献   

17.
Summary Brain from mature rats has been shown previously to contain a natural inhibitor of rat brain sialyltransferase I (CMP-sialic acid: lactosylceramide sialyltransferase activity). This same inhibitor preparation was effective against sialyltransferase I and a second sialyltransferase activity from different lines of cultured cells. Cardiolipin which stimulates sialyltransferase I activity in cultured cells apparently was not required for inhibition. Inhibition was specific for sialyltransferase activities while a third ganglioside biosynthetic enzyme, UDP-gal: glucosyl-ceramide galactosyltransferase activity, was not inhibited. Inhibition of sialyltransferase I was linear with time, heat-resistant, and increased with inhibitor concentration.Gangliosides are sialic-acid containing glycosphingolipids found in brain as well as extraneural tissues and cultured cells t,2. Although the functions of gangliosides are unknown, they appear to play a role in morphological differentiation3 sensory and visual stimulation 4 and as receptor for cholera toxin5–8 and possibly thyroid stimulating hormone9. The monosaccharide units are added to the elongating oligosaccharide chain of the gangliosides in step-wise fashion and different glycosyltransferases catalyze each addition10,11. The activities of these enzymes have been observed to change during development12,14 malignant transformation13 and morphological differentiation3.Although little is known about the regulation of ganglioside synthesis, a natural inhibitor of CMP-AcNeu: GL-2 sialyltransferase (sialyltransferase I) from rat brain has been described14,15. As the inhibitor activity increased with the age of the animal, the same authors suggested that it may regulate the biosynthetic pathway of gangliosides. In this paper, the effects of the rat brain inhibitor on the activities of ganglioside biosynthetic enzymes from several cultured cell lines are described.Abbreviations AcNeu N-acetylneuraminic acid - GL1 glucosylceramide - GL-2 lactosylceramide - GM3 Nacetylneuraminylgalactosylglucosylceramide - GM1 gal actosyl-N-acetylgalactosaminyl-(N-acetylneuraminylgalactosylglucosylceramide - GD1a Nacetylneuraminylgalactosyl-N-acetylgalactosaminyl-(Nacetylneuraminyl)-galactosylglucosylceramide. DR. DUFFARD was a recipient of a Fogarty Center Fellowship.  相似文献   

18.
The enzymatic basis for the differences in hepatic ganglioside patterns in the mouse strains C57Bl/6 and Swiss White (SW) was investigated. SW has a “Swiss-type” ganglioside profile, expressing GM1 ? and GD1a ? in addition to GM2 ? as major hepatic gangliosides, whereas C57Bl/6 shows a “GM2-type” profile, expressing only GM2 ? as the major hepatic ganglioside. The enzyme UDP-galactose:GM2 ganglioside galactosyltransferase (GM2-GalT), which catalyzes the synthesis of GM1 ganglioside, showed a four- to fivefold elevation in intact and solubilized liver Golgi membrane fractions of the SW strain compared to C57Bl/6. Crosses between C57Bl/6 and SW produced an F1 generation with a hepatic ganglioside and enzymatic phenotype intermediate between those of the two parental strains. All three genotypic groups show two forms of the Golgi apparatus enzyme with isoelectric points of 6.5–6.8 and 8.3–9.0. The simplest mode of action of genes which control the enzymatic phenotype that would be consistent with these findings are one or two structural genes or one or two cis-regulatory genes affecting the rate of enzyme synthesis.  相似文献   

19.
Abstract: The labeling pattern of the major individual gangliosides from the microsomal and synaptosomal fractions of rat brain was determined following intracerebral injection of the radioactive sialic acid precursor, N-acetylmannosamine. Microsomal gangliosides initially had a higher specific radioactivity than synaptosomal gangliosides, with both fractions reaching similar specific radioactivities 18 h after precursor injection. In both subcellular fractions, the polysialogangliosides GT1b and GQ1b were initially more highly labeled than all other gangliosides. With the establishment of the labeling pattern, the effect of the convulsant pentylenetetrazol on brain gangliosides was examined in detail. Significant decreases in radioactive label were noted in the polysialogangliosides, GT1b and GQ1b, from the synaptosomal and microsomal fractions of the convulsed animals. The decreases may be due to activation of the membrane-bound neuraminidase present with the gangliosides in neuronal tissue. Prior to experimentation, a methodology was developed to insure quantitative isolation of small amounts of ganglioside free of other lipids and water-soluble contaminants. Combination of this isolation procedure with quantitative densitometry of thin-layer chromatograms permits accurate distributional analyses for individual gangliosides. In applications involving radioactive gangliosides, the method allows the determination of both radioactivity and sialic acid distributions from the same thin-layer chromatogram.  相似文献   

20.
Gangliosides in the external surface of intact synaptosomes from rat brain cortex have been studied by oxidation of exposed galactose and galactosamine groups with galactose oxidase followed by reduction with labeled sodium borohydride. Purified synaptosomes were labeled, disrupted by osmotic shock, and the particulate components fractionated on diatrizoate to give four synaptosomal membrane fractions (A-D) and a mitochondrial pellet (E). Fractions A and B represent synaptosomal plasma membranes. When intact synaptosomes were labeled, the major portion of the total radioactivity incorporated into ganglioside fraction was found to be in G M1 3 species. With isolated membrane fractions little selectivity was seen: (1) more label was present compared to intact synaptosomes, and (2) zones corresponding to GM2, GM1, GD1a, GD1b were the major gangliosides labeled. The results confirm the conclusion that membrane fractions A and B are derived from the exposed synaptosome surface and also show that GM1 is the major ganglioside species available for enzyme oxidation at the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号