首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE OF REVIEW: A novel link between inflammation and acute coronary syndromes is emerging, in that infiltrating inflammatory cells may convert a clinically silent coronary plaque into a dangerous and potentially lethal plaque. The majority of acute atherothrombotic events now relate to erosion or rupture of such unstable plaques. Here we summarize the molecular mechanisms by which activated mast cells may contribute to plaque erosion or rupture. RECENT FINDINGS: In-vitro experiments have revealed a multitude of paracrine effects exerted by activated mast cells. By secreting heparin proteoglycans and chymase, activated mast cells efficiently inhibit the proliferation of smooth muscle cells in vitro, and reduce their ability to produce collagen by a transforming growth factor beta-dependent and -independent mechanism. Mast cell chymase and tryptase are capable of activating matrix metalloproteinases types 1 and 3, causing degradation of the extracellular matrix component, collagen, necessary for the stability of the plaque. Activated mast cells also secrete matrix metalloproteinases types 1 and 9 themselves. Furthermore, chymase induces SMC apoptosis by degrading fibronectin, a pericellular matrix component necessary for SMC adhesion and survival, with the subsequent disruption of focal adhesions and loss of outside-in survival signaling. By secreting chymase and tumour necrosis factor alpha, activated mast cells also induce endothelial cell apoptosis. SUMMARY: Locally activated mast cells may participate in the weakening of atherosclerotic plaques by secreting heparin proteoglycans, chymase, and cytokines, which affect the growth, function and death of arterial endothelial cells and smooth muscle cells, thereby predisposing to plaque erosion or rupture.  相似文献   

2.
The hemopoietic growth factor, interleukin 3, has been shown to activate protein kinase C without causing hydrolysis of inositol phospholipids. The potential involvement of phosphatidylcholine hydrolysis as an alternative source of diacylglycerol was investigated in an interleukin 3-dependent murine mast/megakaryocyte cell line, R6-XE.4. Treatment of these cells with interleukin 3 rapidly stimulated both the release of water-soluble choline metabolites and the resynthesis of phosphatidylcholine. Therefore, a phosphatidylcholine cycle may operate as part of the signal transduction pathway in cells responding to interleukin 3.  相似文献   

3.
Under pathophysiological conditions, like myocardial ischemia and reperfusion, cardiac phospholipid homeostasis is severely disturbed, resulting in a net degradation of phospholipids and the accumulation of degradation products, such as lysophospholipids and (non-esterified) fatty acids. The derangements in phospholipid metabolism are thought to be involved in the sequence of events leading to irreversible myocardial injury. The net degradation of phospholipids as observed during myocardial ischemia may result from increased hydrolysis and/or reduced resynthesis, while during reperfusion hydrolysis is likely to prevail in this net degradation. Several studies indicate that the activation of phospholipases A2 plays an important role in the hydrolysis of phospholipids. In this review current knowledge regarding the potential role of the different types of phospholipases A2 in ischemia and reperfusion-induced damage is being evaluated. Furthermore, it is indicated how recent advances in molecular biological techniques could be helpful in determining whether disturbances in phospholipid metabolism indeed play a crucial role in the transition from reversible to irreversible myocardial ischemia and reperfusion-induced injury, the knowledge of which could be of great therapeutic relevance.  相似文献   

4.
The glycosidic “high anti” conformation is postulated to be the conformation required by the enzymes adenosine kinase and inosine phosphorylase. Purine analogs that are stable in this conformation are either effective substrates or inhibitors of these enzymes. Ara-adenine is shown to be highly unstable in the high anti conformation. The inactivity of ara-adenine as a substrate for both adenosine kinase and inosine phosphorylase is attributed to its inability to assume the high anti conformation specified by these enzymes. That adenosine itself has a local minima in the high anti conformation, as does inosine and guanosine, is required by its ability to inhibit the synthesis of uridylic acid.The minimal cytotoxic properties of ara-adenine is a consequence of its failure, in normal cells, to be converted to the toxic nucleotide form. The ability of ara-adenine to selectively inhibit DNA viruses means that in DNA virus infected cells the conversion of ara-adenine to ara-AMP is facilitated through a mechanism that does not require a substrate high anti conformation.It is apparent that selective antiviral and anticancer nucleoside analogs may be constructed if their conversion to the toxic nucleotide form is prohibited in normal tissues but allowed in cancer cells or virus infected cells. The basis for the selective effects of ara-adenine is that normal cells require a substrate conformation in which ara-adenine is unstable but that certain neoplastic and viral mechanisms for the conversion of ara-adenine to ara-AMP exist which are able to utilize ara-adenine in its stable syn or anti conformations.  相似文献   

5.
A neoplastic connective tissue mast cell from a dog mast cell sarcoma has been grown in tissue culture for 50 passages over a period of 2 years. The cells were grown as monolayer cultures in glass bottles, using Eagle's basal medium fortified with calf serum. The cultures were contaminated with an Alkaligenes sp. for 10 months but finally were sterilized bacteriologically by treatment with specific antiserum combined with antibiotics. The cells grow in a fibroblastic pattern, and contain mitochondria, mast cell granules, and lipid granules or droplets. The mast cell granules stain basophilic with Giemsa's stain and metachromatically with azure A or toluidine blue. They also stain with Sudan black B and with periodic acid-Schiff stain. The interphase nuclei are vesicular, contain from 1 to 20 nucleoli, and frequently show bizarre outlines. Multinucleate cells are often seen, as are mitotic figures. Extracellular fibrous material occurs in all cultures and apparently originates from the cell surface. This material does not have the structure of connective tissue fibers and has not been identified. The cells develop an increased number of metachromatic granules when grown in medium containing heparin and an increased number of sudanophilic granules when grown in medium containing stearic acid. Only small amounts of histamine were present in the tumor from which this cell line was derived and in the cells grown in tissue culture.  相似文献   

6.
Human mast cell beta-tryptase is a gelatinase   总被引:3,自引:0,他引:3  
Remodeling of extracellular matrix is an important component in a variety of inflammatory disorders as well as in normal physiological processes such as wound healing and angiogenesis. Previous investigations have identified the various matrix metalloproteases, e.g., gelatinases A and B, as key players in the degradation of extracellular matrix under such conditions. Here we show that an additional enzyme, human mast cell beta-tryptase, has potent gelatin-degrading properties, indicating a potential contribution of this protease to matrix degradation. Human beta-tryptase was shown to degrade gelatin both in solution and during gelatin zymographic analysis. Further, beta-tryptase was shown to degrade partially denatured collagen type I. beta-Tryptase bound strongly to gelatin, forming high molecular weight complexes that were stable during SDS-PAGE. Mast cells store large amounts of preformed, active tryptase in their secretory granules. Considering the location of mast cells in connective tissues and the recently recognized role of mast cells in disorders in which connective tissue degradation is a key event, e.g., rheumatoid arthritis, it is thus likely that tryptase may contribute to extracellular matrix-degrading processes in vivo.  相似文献   

7.
1. Choline- and inositol-labelled phospholipids of human cultured lymphocytes turn over in a biphasic manner; phytohaemagglutinin activation stimulates turnover. 2. Choline-labelled phospholipids of rat liver and kidney, but not of blood, turn over in vivo as fast as those of duodenum, ileum or colon. Turnover in the intestinal tissues is greater in fed than in starved or vitamin A-deficient rats. In each case phosphatidylcholine turns over relatively faster than sphingomyelin or lyso-phosphatidylcholine. 3. It is concluded that phospholipid turnover of the type described is a common feature of viable cells, and that metabolically favourable conditions increase, rather than decrease, turnover.  相似文献   

8.
Enhanced phospholipid methylation has been suggested to be an obligatory process in IgE-dependent stimulus-secretion coupling in human lung mast cells. Our studies with mast cell-enriched lung preparations do not support this hypothesis, demonstrating no increased 3H-methyl radiolabeling of chloroform/methanol-extracted lipids or chromatographically separated phospholipids accompanying anti-IgE-dependent histamine secretion. Inhibitors of transmethylation, 3-deazaadenosine, and homocysteine thiolactone inhibited histamine secretion by both anti-IgE and calcium ionophore A23187, reflecting a requirement of secretion for overall integrity of cellular transmethylation. These agents induced small increases in cAMP concentration which are considered to make at most a minor contribution to this inhibition. The inability of methylation inhibitors to diminish anti-IgE-dependent increases in lung mast cell cAMP levels would suggest that not only does phospholipid methylation have no role in histamine secretion but also it does not participate in the activation of adenylate cyclase by this stimulus.  相似文献   

9.
The interaction between rat serosal mast cells and low density lipoproteins (LDL) was studied in vitro. When rat 125I-LDL was incubated with mast cells, it was bound to a binding site on the mast cell surface but was not internalized by the cells. Even though 125I-LDL was not internalized, its protein component, apolipoprotein B, was rapidly degraded. The proteolytic activity responsible for the degradation of apolipoprotein B was present in the extracellular fluid of mast cells. It could be shown that the degradation was caused entirely by specific cell organelles of mast cells, the granules, which were spontaneously released into the extracellular fluid during preparation and incubation of the cells. In contrast to uncontrolled spontaneous degranulation, a controlled specific degranulation of mast cells can be induced by treating the cells with the compound 48/80. When increasing amounts of 48/80 were added to mast cell suspensions, a dose-dependent release of granules was observed and an increase in the rate of 125I-LDL degradation resulted. The increase in 125I-LDL degradation closely followed the increase in granule release. Thus, a quantitative relationship between the amount of granules present in the extracellular fluid and the amount of degradation of 125I-LDL could be established. The apolipoprotein part of LDL was extensively degraded by isolated mast cell granules. Analysis by polyacrylamide gel electrophoresis showed that upon incubation of LDL with isolated granules, the apolipoprotein B band rapidly disappeared with simultaneous appearance of several low molecular weight bands. The degradation of 125I-LDL by mast cell granules proceeded optimally at neutral pH and at physiological ionic strength. The results show that mast cell granules are able to efficiently degrade LDL in vitro, once released from mast cells into the extracellular fluid.  相似文献   

10.
Determination of (ADP-ribose)n degradation rates in permeabilized HeLa cells, measured as loss of acid-insoluble radioactivity from permeabilized cells previously incubated with [3H]NAD+, showed bi-phasic kinetics. The majority of label was lost within 20 min at pH 6.0 and 37 degrees C and has a half-life of about 12-15 min. The minor ADP-ribose component was either removed very slowly, or appeared to be stable over an 80 min incubation. The degradation rate of the labile component was directly proportional to the initial amount of ADP-ribose present, and was independent of the experimental conditions used to create various elevated levels. The degradation rates of monomeric and oligo/polymeric ADP-ribose were the same, surprising since different enzymes catalyse the respective reactions. The more stable ADP-ribose component could be more inaccessible to degrading enzymes and/or might represent a different linkage to protein, the cleavage of which is slow.  相似文献   

11.
Administration of chlorphentermine to rats leads to an increase in the phospholipid content of pulmonary surfactant materials and alveolar macrophages. It is known that this drug binds to pure phospholipids and prevents their degradation by phospholipases. Therefore, experiments were carried out to determine if chlorphentermine binds to surfactant phospholipids in vitro and to measure the in vivo association of drug with phospholipids in alveolar lavage materials from rats injected with [14C]chlorphentermine. The presence of chlorphentermine in alveolar macrophages, type II cells and other small pneumocytes (a population of lung cells which does not include alveolar macrophages or type II cells) from treated animals was also assessed. Binding of the drug to surfactant phospholipids, as measured with the fluorescent probe, 1-anilino-8-naphthalene sulfonate, occurs in vitro and does not differ in various subfractions of alveolar lavage materials isolated by differential centrifugation. Following daily administration of chlorphentermine to rats for 3 days, the drug appears to be associated with surfactant phospholipids such that the molar ratio is 1:100 (chlorphentermine/phospholipid). Chlorphentermine is also associated with alveolar macrophages (molar ratio, 1:18) and type II cells (molar ratio, 1:33). Not much drug is associated with the population of other lung cells (molar ratio, 1:333). In alveolar macrophages, approx. 70% of the drug seems to be bound to phospholipid and/or sequestered in subcellular organelles. However, only 20% of the chlorphentermine is bound and/or sequestered in type II cells. The results of these experiments suggest that following chlorphentermine administration, the drug is associated with phospholipids in acellular pulmonary lavage materials, alveolar macrophages and type II cells. This drug-phospholipid interaction may impair phospholipid degradation and lead to a phospholipidosis in surfactant materials and alveolar macrophages.  相似文献   

12.
RNase R, an important exoribonuclease involved in degradation of structured RNA, is subject to a novel mechanism of regulation. The enzyme is extremely unstable in rapidly growing cells but becomes stabilized under conditions of stress, such as stationary phase or cold shock. RNase R instability results from acetylation which promotes binding of tmRNA-SmpB, two trans-translation factors, to its C-terminal region. Here, we examine how binding of tmRNA-SmpB leads to proteolysis of RNase R. We show that RNase R degradation is due to two proteases, HslUV and Lon. In their absence, RNase R is stable. We also show, using an in vitro system that accurately replicates the in vivo process, that tmRNA-SmpB is not essential, but it stimulates binding of the protease to the N-terminal region of RNase R and that it does so by a direct interaction between the protease and SmpB which stabilizes protease binding. Thus, a sequence of events, initiated by acetylation of a single Lys residue, results in proteolysis of RNase R in exponential phase cells. RNase R in stationary phase or in cold-shocked cells is not acetylated, and thereby remains stable. Such a regulatory mechanism, dependent on protein acetylation, has not been observed previously in bacterial cells.  相似文献   

13.
It has been shown that IgE binding to FcepsilonRI on mast cells results in increased FcepsilonRI expression, which in turn enhances IgE-dependent chemical mediator release from mast cells. Therefore, prevention of the IgE-mediated FcepsilonRI up-regulation would be a promising strategy for management of allergic disorders. However, the mechanism of IgE-mediated FcepsilonRI up-regulation has not been fully elucidated. In this study, we analyzed kinetics of FcepsilonRI on peritoneal mast cells and bone marrow-derived mast cells. In the presence of brefeldin A, which prevented transport of new FcepsilonRI molecules to the cell surface, levels of IgE-free FcepsilonRI on mast cells decreased drastically during culture, whereas those of IgE-bound FcepsilonRI were stable. In contrast, levels of FcgammaRIII on the same cells were stable even in the absence of its ligand, indicating that FcepsilonRI alpha-chain, but not beta- and gamma-chains, was responsible for the instability of IgE-free FcepsilonRI. As far as we analyzed, there was no evidence to support the idea that IgE binding to FcepsilonRI facilitated synthesis and/or transport of FcepsilonRI to the cell surface. Therefore, the stabilization and accumulation of FcepsilonRI on the cell surface through IgE binding appears to be the major mechanism of IgE-mediated FcepsilonRI up-regulation.  相似文献   

14.
There is a direct correlation between dermal mast cell prevalence in dorsal skin of different mouse strains and susceptibility to UVB-induced systemic immunosuppression; highly UV-susceptible C57BL/6 mice have a high dermal mast cell prevalence while BALB/c mice, which require considerable UV radiation for 50% immunosuppression, have a low mast cell prevalence. There is also a functional link between the prevalence of dermal mast cells and susceptibility to UVB- and cis-urocanic acid (UCA)-induced systemic immunosuppression. Mast cell-depleted mice are unresponsive to UVB or cis-UCA for systemic immunosuppression unless they are previously reconstituted at the irradiated or cis-UCA-administered site with bone marrow-derived mast cell precursors. cis-UCA does not stimulate mast cell degranulation directly. Instead, in support of studies showing that neither UVB nor cis-UCA was immunosuppressive in capsaicin-treated, neuropeptide-depleted mice, cis-UCA-stimulated neuropeptide release from sensory c-fibers which, in turn, could efficiently degranulate mast cells. Studies in mice suggested that histamine, and not tumor necrosis factor alpha (TNF-alpha), was the product from mast cells that stimulated downstream immunosuppression. Histamine receptor antagonists reduced by approximately 60% UVB and cis-UCA-induced systemic immunosuppression. Indomethacin administration to mice had a similar effect which was not cumulative with the histamine receptor antagonists. Histamine can stimulate keratinocyte prostanoid production. We propose that both histamine and prostaglandin E(2) are important in downstream immunosuppression; both are regulatory molecules supporting the development of T helper 2 cells and reduced expression of type 1 immune responses such as a contact hypersensitivity reaction.  相似文献   

15.
Zhou YD  Fang XF  Cui ZJ 《Cell calcium》2009,45(1):18-28
UVA is a major bio-active component in solar irradiation, and is shown to have immunomodulatory and anti-inflammatory effects. The detailed molecular mechanism of UVA action in regard to calcium signaling in mast cells, however, is not fully understood. In this study, it was found that UVA induced ROS formation and cytosolic calcium oscillations in individual rat mast cells. Exogenously added H2O2 and hypoxanthine/xanthine oxidase (HX/XOD) mimicked UVA effects on cytosolic calcium increases. Regular calcium oscillation induced by UVA irradiation was inhibited completely by the phosphatidylinositol-specific phospholipase C inhibitor U73122, but U73343 was without effect. Tetrandrine, a calcium entry blocker, or calcium-free buffer abolished UVA-induced calcium oscillations. L-type calcium channel blocker nifedipine and stores-operated calcium channel blocker SK&F96365 had no such inhibitory effect. ROS induction by UVA was abolished after pre-incubation with anti-oxidant NAC or with NAD(P)H oxidase inhibitor DPI; such treatment also made UVA-induced calcium oscillation to disappear. UVA irradiation did not increase mast cell diameter, but it made mast cell structure more granular. Spectral confocal imaging revealed that the emission spectrum of the endogenous fluorophore in single mast cell contained a sizable peak which corresponded to that of NAD(P)H. Taken together, these data suggest that UVA in rat mast cells could activate NAD(P)H oxidase, to produce ROS, which in turn activates phospholipase C signaling, to trigger regular cytosolic calcium oscillation.  相似文献   

16.
Inhibitors of protein synthesis, cycloheximide and puromycin, blocked ACTH (adrenocorticotropin)-induced increases in phospholipid mass, including phosphatidylinositol, but paradoxically increase 32P-labelling (but not [3H]glycerol-labelling) therein. Cycloheximide also provoked an initial rapid decrease in 32P-prelabelled phospholipids, followed by an increase in [32P]Pi incorporation. These effects of cycloheximide and puromycin occurred in ACTH-treated (but not in control) cells. It appears that inhibition of protein synthesis during ACTH action provokes an increase in phospholipid degradation, followed by partial resynthesis of the phospholipid head groups.  相似文献   

17.
When mouse bone marrow-derived mast cells (BMMC) are cocultured with a confluent layer of mouse 3T3 fibroblasts in the presence of WEHI-3-conditioned medium, the mast cells undergo a phenotypic change toward that of a connective tissue mast cell, and the fibroblasts increase their synthesis of globopentaosylceramide. We now demonstrate that fibroblasts lose their contact inhibition and multiply such that by the 2nd and the 4th wk of coculture there are, respectively, approximately four-fold and six-fold more fibroblasts than in the cultures that are not exposed to BMMC. This in vitro increase in the number of fibroblasts is dependent on the number of mast cells (over the range of 6 x 10(4) to 1 x 10(6) BMMC/culture) initially seeded with the fibroblasts and on the concentration of WEHI-3-conditioned medium present during the coculture. That the fibroblasts also multiply in BMMC/fibroblast cocultures exposed to synthetic IL-3 or to purified IL-3 indicates that IL-3 is a component in WEHI-3-conditioned medium that induces mast cells to produce the fibroblast growth factor. The number of fibroblasts does not increase if fibroblasts are exposed to lysates of BMMC, or to BMMC-derived conditioned medium, or if the two cell types are separated from one another during the coculture with a 3-microns filter or a 0.4-microns filter. Thus, IL-3-activated BMMC must be in proximity to fibroblasts to induce them to multiply. Because of their increased numbers per culture dish, total fibroblasts that were cocultured with mast cells synthesized approximately two-fold more 35S-labeled proteoglycans, incorporated approximately 3-fold more [3H] proline into collagenase-sensitive proteins, and had substantially more alpha 2(I) collagen mRNA than fibroblasts that were maintained in the absence of mast cells. These is vitro studies reveal a sequence by which IL-3-activated mast cells may play a role in the induction of fibrosis.  相似文献   

18.
Incubation of radiolabeled human C3a with rat peritoneal mast cells resulted in high levels of uptake and extensive degradation of the ligand. Both cell-bound and free radiolabeled human C3a underwent extensive degradation by rat mast cells even at 0 degrees C. We examined several protease inhibitors for their ability to prevent degradation of radiolabeled human C3a by the rat mast cells. The inhibitors PMSF, chymostatin, and soybean trypsin inhibitor were most effective in preventing radiolabeled human C3a degradation. Degradation of the cell-bound ligand was totally inhibited only by PMSF. These compounds are effective inhibitors of a chymotrypsin-like enzyme (chymase) extracted from rat mast cells. Chemical cross-linking of radiolabeled human C3a to surface components on the rat mast cells, in the presence of PMSF, revealed one major and two minor bands. The mast cell component in both the major and minor bands proved to be chymase-associated based on a direct comparison with purified chymase isolated from rat mast cells. However, neither antichymase antibody nor chymase inhibitors influenced the degranulating activity of C3a on rat mast cells that occur independently of the C3a-chymase interactions. We conclude that there are neither specific C3a-binding sites on rat mast cells nor specific receptors whose occupancy leads to cellular activation. Although human C3ades Arg is inactive on guinea pig ileal and lung tissue, it binds to and induces degranulation of rat mast cells, as well as enhances vascular permeability in rat skin, at concentrations nearly identical to that of intact C3a. The fact that both C3a and C3ades Arg stimulated mast cell activation, at concentrations in excess of 10(-6) M, argues against specific binding sites for the anaphylatoxin on rat mast cells. It is proposed that the cationic C3a molecule activates rat mast cells in a secretory and nonlytic manner by a nonspecific mechanism similar to that of other polybasic compounds.  相似文献   

19.
Accelerated degradation of membrane phospholipids characterizes the reaction of rat liver and myocardial cells to ischemia. A similar disturbance in phospholipid metabolism was sought in anoxic hepatocytes. Primary cultures of adult rat hepatocytes were made anoxic by evacuation of the CO2O2 atmosphere with N2. The resulting loss of ATP was reversible upon reoxygenation after periods of anoxia up to 2 h. With 3–4 h of anoxia, the cells were incapable of regenerating ATP levels. Loss of viability was also indicated by the inability of over 90% of the cells after 3–4 h to exclude trypan blue. The baseline rate of turnover of [14C]-ethanolamine or glycerol prelabeled phospholipids was then established. A constant rate of turnover was found for, at least, the first 3 days the cells were in culture. No loss of total phospholipid occurred during this time. Anoxia induced very significant differences in the fate of prelabeled phospholipids. With [14C]-ethanolamine there was a 30% loss of total cellular radioactivity within 4 h. Total phospholipids determined as lipid phosphate decreased by 20%. This depletion of cellular phospholipids was paralleled by an accumulation of hydrophilic degradation products in the culture medium. Phosphorylethanolamine accounted for 50% of these, with equal amounts of glycerophosphorylethanolamine and ethanolamine the other 50%. A similar accumulation in the medium occurred with [14C]-glycerol- and [14C]choline-prelabeled phospholipids. The accelerated degradation of phospholipid was accompanied by evidence of membrane dysfunction as shown by the loss of 50% of the glucose 6-phosphatase activity in whole cell homogenates. The results of these studies establish that anoxia induces in cultured rat hepatocytes a similar disturbance to phospholipid metabolism as does ischemia of the same cells in the intact animal. This implies that the deprivation of oxygen per se determines the characteristic reaction of cells to ischemia. This conclusion allows further analysis of the effects of O2 deprivation on cultured hepatocytes as a new experimental model with which to further explore the effects of ischemia on cells.  相似文献   

20.
When monolayer cultures of neuroblastoma N2a cells were prelabelled with [3H]fucose to steady state, and then reincubated in complete medium in the presence of unlabelled 40mm-l-fucose, there was a rapid metabolism of fucosylated cellular macromolecules and the specific radioactivity of the acid-insoluble material decreased by 22% within 2h. After this period of time the remaining radioactive glycoproteins appeared to be more stable and the rate of loss of specific radioactivity markedly decreased. Since fucose is known to be associated predominantly with plasma-membrane components, the analysis of fucosylated glycoproteins was characterized in plasma-membrane fractions by polyacrylamide-gel electrophoresis. Two experimental approaches were used to measure glycoprotein degradation and turnover in the cell-surface membranes. In one set of experiments, with a similar incubation procedure to that used with intact cells, three membrane components were rapidly degraded (150000, 130000 and 48000 daltons), but another surface glycoprotein (68000 daltons) appeared to be more slowly metabolized than the mean rate of glycoprotein degradation. The relationship of the degradation of membrane glycoproteins to their turnover was analysed by dual-label experiments that used both [14C]fucose and [3H]fucose. Glycoproteins of the surface membrane of neuroblastoma cells were found to turn over at heterogeneous rates. The components mentioned above that exhibited significantly rapid rates of degradation, were also shown to turn over more rapidly than the average surface component. In addition to the membrane components detected by the use of only [3H]fucose, dual-label experiments illustrated that numerous surface glycoproteins were metabolized more rapidly or slowly than most of the cell-surface constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号