首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulated data suggest that endothelial cells express specific receptors for several peptide and (glyco)protein hormones that may transport hormones across the cell to be delivered to the interstitial fluid and tissue target cells. Surprisingly, very little information is available on the actual endothelial organelles involved in this cellular process. In the present study the transfer of follicle-stimulating hormone (FSH) through the endothelial barrier of rat testes was examined by analysing the binding and transport of gold-tagged recombinant human (rh)FSH under various conditions using electron microscopy. At 4 degrees C the probe bound specifically to the luminal surface of the endothelial cells without internalization. The use of 125I-rhFSH, which allows precise quantitation of the binding, confirmed the specificity of hormone interaction with the testicular microvasculature. At 37 degrees C the hormone was internalized via coated pits and vesicles into an extensive subluminal tubulo-vesicular compartment and was transported across the endothelium via a system of tubules and vesicles. Moreover, monoclonal antibodies against the FSH receptor ectodomain coupled to colloidal gold followed the same route. In contrast, a non specific, fluid-phase uptake via caveolae was observed for a major plasma protein - rat serum albumin and a fluid-phase tracer - peroxidase. These results suggest that FSH transcytosis across the testicular endothelial barrier is receptor-mediated and involves luminal uptake via coated pits/vesicles, sorting at the level of luminal early endosomes, and transcellular transport through transcytotic tubulo-vesicular organelles. Similar receptor-mediated pathways are likely to be involved in the physiological functioning of a number of other protein and peptide hormones that must translocate specifically from blood to the target cells.  相似文献   

2.
The angiopoietin-Tie2 binding and related signal transduction pathways are crucial for vascular angiogenesis, blood vessel integrity and maturation. In this study, we preformed a virtual screening of small molecules targeting to Tie2. The binding site was selected at the extracellular ligand binding region of Tie2, rather than its conventional endocellular ATP binding region. It was found that loperamide, a widely-used antidiarrhea drug, was among the top hits. The binding between loperamide and Tie2 was confirmed by surface plasmon resonance (SPR) assay. Loperamide competitively inhibited the binding of both angiopoietin1 and angiopoietin2. These results indicate that loperamide is an antagonist of angiopoietin1 and angiopoietin2.  相似文献   

3.
We have isolated a new Wnt receptor frizzled family member from Xenopus laevis, Xenopus frizzled-5 (Xfz5), a likely ortholog of human frizzled-5. Based on Northern and whole-mount in situ hybridization data, Xfz5 is first detected at the late neurula stage in retinal primordia. Throughout the tailbud stage Xfz5 is expressed exclusively in the neural retina within the optic vesicles. During tadpole stage Xfz5 expression becomes restricted to the ciliary marginal zone. This highly restrictive expression pattern makes Xfz5 an excellent marker for neural retinal tissue.  相似文献   

4.
Heme oxygenase-1 induction may explain the antioxidant profile of aspirin   总被引:10,自引:0,他引:10  
Aspirin is known to exert antioxidant effects by as yet unidentified mechanisms. In cultured endothelial cells derived from human umbilical vein, aspirin (30-300 microM) increased heme oxygenase-1 (HO-1) protein levels in a concentration-dependent fashion up to fivefold over basal levels. HO-1 induction was accompanied by a marked increase in catalytic activity of the enzyme as reflected by enhanced formation of both carbon monoxide and bilirubin. Pretreatment with aspirin or bilirubin at low micromolar concentrations protected endothelial cells from hydrogen peroxide-mediated toxicity. HO-1 induction and endothelial protection by aspirin were not mimicked by indomethacin, another inhibitor of cyclooxygenase. The nitric oxide (NO) synthase blocker L-NAME prevented aspirin-dependent HO-1 induction. These findings demonstrate that aspirin targets HO-1, presumably via NO-dependent pathways. Induction of HO-1 expression and activity may be a novel mechanism by which aspirin prevents cellular injury under inflammatory conditions and in cardiovascular disease.  相似文献   

5.
The organic nitrate pentaerythrityl tetranitrate (PETN) is known to exert long-term antioxidant and antiatherogenic effects by as yet unidentified mechanisms. In cultured endothelial cells derived from human umbilical vein, the active PETN metabolite PETriN (0.01-1 mM) increased heme oxygenase (HO)-1 mRNA and protein levels in a concentration-dependent fashion. HO-1 induction was accompanied by a marked increase in catalytic activity of the enzyme as reflected by enhanced formation of carbon monoxide and bilirubin. Pretreatment with PETriN or bilirubin at low micromolar concentrations protected endothelial cells from hydrogen peroxide-mediated toxicity. HO-1 induction and endothelial protection by PETriN were not mimicked by isosorbide dinitrate, another long-acting nitrate. The present study demonstrates that PETriN stimulates mRNA and protein expression as well as enzymatic activity of the antioxidant defense protein HO-1 in endothelial cells. Increased HO-1 expression and ensuing formation of cytoprotective bilirubin may contribute to and explain the specific antioxidant and antiatherogenic actions of PETN.  相似文献   

6.
R R Goodman  S H Snyder 《Life sciences》1982,31(12-13):1291-1294
The pharmacologically defined kappa drug 3H-ethylketazocine (3H-EKC) and 3H-bremazocine bind to unique sites, but also to mu and delta receptors. By displacing mu and delta interactions with morphine and D-Ala2, D-Leu5-enkephalin (DADL) respectively we have visualized selective receptors for 3H-EKC and 3H-bremazocine. These two kappa ligands are localized to sites different from mu and delta receptors labeled with 3H-dihydromorphine (3H-DHM) and 3H-DADL. The highest density and most selective localization of putative kappa receptors occurs in layers V and VI of the cerebral cortex. Cells in these layers project to the thalamus, regulating sensory input to the cortex. These deep cortical kappa receptors may account for the unique sedative and analgesic actions of kappa opiates.  相似文献   

7.
Ye F  Florian M  Magder SA  Hussain SN 《Steroids》2002,67(3-4):305-310
Estrogen promotes endothelial cell proliferation and survival in the vasculture of non-reproductive organs. The main mechanisms through which estrogen exerts its effects on endothelial cells remain unknown. Angiopoietins are newly described modulators of endothelial cell survival and they exert their effects through the activation of endothelial cell-specific Tie-2 receptors. In this study, we evaluated whether estrogen modulates the activity and expression of Tie-2 receptors, Ang-1 and its endogenous antagonist; angiopoietins-2 (Ang-2) in non-reproductive organs. Using RT-PCR, we found that daily administration of 17-beta-estradiol for 8 days in ovariectomized rats results in a significant reduction in tissue Ang-1 mRNA expression. By comparison, estrogen therapy produced a significant increase in Ang-2 mRNA in estrogen-treated rats with heart, kidney and lung Ang-2 mRNA levels reaching 169%, 152% and 224% of those of oil-treated animals, respectively. We also observed that tyrosine phosphorylation of Tie-2 receptors is significantly attenuated in ovariectomized rats treated with 17-beta-estradiol. Our results suggest that the effects of estrogen on the vasculature of non-reproductive organs require the inhibition of angiopoietin-1-Tie-2 receptor pathway and that this inhibition is achieved through simultaneous down-regulation of Ang-1 and Tie-2 expression and elevation in Ang-2 expression.  相似文献   

8.
It has become widely accepted that the osmolality gradient along the corticomedullary axis of the mammalian outer medulla is generated and sustained by a process of countercurrent multiplication: active NaCl absorption from thick ascending limbs is coupled with the counterflow configuration of the descending and ascending limbs of the loops of Henle to generate an axial osmolality gradient along the outer medulla. However, aspects of anatomic structure (e.g., the physical separation of the descending limbs of short loops of Henle from contiguous ascending limbs), recent physiologic experiments (e.g., those that suggest that the thin descending limbs of short loops of Henle have a low osmotic water permeability), and mathematical modeling studies (e.g., those that predict that water-permeable descending limbs of short loops are not required for the generation of an axial osmolality gradient) suggest that countercurrent multiplication may be an incomplete, or perhaps even erroneous, explanation. We propose an alternative explanation for the axial osmolality gradient: we regard the thick limbs as NaCl sources for the surrounding interstitium, and we hypothesize that the increasing axial osmolality gradient along the outer medulla is primarily sustained by an increasing ratio, as a function of increasing medullary depth, of NaCl absorption (from thick limbs) to water absorption (from thin descending limbs of long loops of Henle and, in antidiuresis, from collecting ducts). We further hypothesize that ascending vasa recta that are external to vascular bundles will carry, toward the cortex, an absorbate that at each medullary level is hyperosmotic relative to the adjacent interstitium.  相似文献   

9.
Genomic uracil resulting from spontaneously deaminated cytosine generates mutagenic U:G mismatches that are usually corrected by error-free base excision repair (BER). However, in B-cells, activation-induced cytosine deaminase (AID) generates U:G mismatches in hot-spot sequences at Ig loci. These are subject to mutagenic processing during somatic hypermutation (SHM) and class switch recombination (CSR). Uracil N-glycosylases UNG2 and SMUG1 (single strand-selective monofunctional uracil-DNA glycosylase 1) initiate error-free BER in most DNA contexts, but UNG2 is also involved in mutagenic processing of AID-induced uracil during the antibody diversification process, the regulation of which is not understood. AID is strictly single strand-specific. Here we show that in the presence of Mg2+ and monovalent salts, human and mouse SMUG1 are essentially double strand-specific, whereas UNG2 efficiently removes uracil from both single and double stranded DNA under all tested conditions. Furthermore, SMUG1 and UNG2 display widely different sequence preferences. Interestingly, uracil in a hot-spot sequence for AID is 200-fold more efficiently removed from single stranded DNA by UNG2 than by SMUG1. This may explain why SMUG1, which is not excluded from Ig loci, is unable to replace UNG2 in antibody diversification. We suggest a model for mutagenic processing in which replication protein A (RPA) recruits UNG2 to sites of deamination and keeps DNA in a single stranded conformation, thus avoiding error-free BER of the deaminated cytosine.  相似文献   

10.
11.
Gene expression is a result of the interplay between the structure, type, kinetics, and specificity of gene regulatory interactions, whose diversity gives rise to the variety of life forms. As the dynamic behavior of gene regulatory networks depends on their structure, here we attempt to determine structural reasons which, despite the similarities in global network properties, may explain the large differences in organismal complexity. We demonstrate that the algebraic connectivity, the smallest non-trivial eigenvalue of the Laplacian, of the directed gene regulatory networks decreases with the increase of organismal complexity, and may therefore explain the difference between the variety of analyzed regulatory networks. In addition, our results point out that, for the species considered in this study, evolution favours decreasing concentration of strategically positioned feed forward loops, so that the network as a whole can increase the specificity towards changing environments. Moreover, contrary to the existing results, we show that the average degree, the length of the longest cascade, and the average cascade length of gene regulatory networks cannot recover the evolutionary relationships between organisms. Whereas the dynamical properties of special subnetworks are relatively well understood, there is still limited knowledge about the evolutionary reasons for the already identified design principles pertaining to these special subnetworks, underlying the global quantitative features of gene regulatory networks of different organisms. The behavior of the algebraic connectivity, which we show valid on gene regulatory networks extracted from curated databases, can serve as an additional evolutionary principle of organism-specific regulatory networks.  相似文献   

12.
成年牦牛心室壁微血管的形态特征   总被引:1,自引:0,他引:1  
用ABS血管铸型、扫描电镜观察法和血管炭素墨水灌注、组织切片法研究了成年牦牛心脏微血管的构筑特征,首次对各级微血管的管径和毛细血管的密度进行了测量,并对成年牦牛心室壁的微血管进行了分类.结果显示:成年牦牛心脏微动脉、毛细血管前微动脉和毛细血管的管径平均值分别为为 78.50±10.23 μm ,16.24±2.27 μm ,6.57±2.28 μm.其管径范围分别为12.5~100 μm,12.50~19.99 μm,6.25~12.50 μm.成年牦牛心脏微动脉一般经3-4级分支才发出毛细血管,其第一、第二、第三和第四级分支的管径平均值分别为87.64±4.87 μm, 69.46±6.67 μm, 48.52±5.77 μm,30.45±5.44 μm.其范围分别为79.55~95 μm, 59.31~79.55 μm,37.50~59.31 μm,19.99~37.50 μm.成年牦牛心肌层毛细血管的密度为2 528±263根/mm2,靠近心外膜处毛细血管的密度为1 864±179根/mm2,心内膜毛细血管的密度为1 636±235根/ mm2.成年牦牛心脏微动脉铸型表面呈典型的"树皮样"结构,偶尔可见卵圆形的内皮细胞核压痕.成年牦牛心脏毛细血管前微动脉铸型形态呈锥状,铸型表面有环行缩窄.成年牦牛心脏的毛细血管铸型表面光滑,有环形缩窄,无内皮细胞核压痕.成年牦牛心肌层中毛细血管与心肌纤维平行,并形成"H"形或"Y"形的广泛吻合,而在靠近心内膜处毛细血管形态较为扭曲,毛细血管多形成平面或立体的吻合.成年牦牛心脏微静脉管径多在300 μm以下,管腔扁且不规则,微静脉铸型呈"树根"样结构.  相似文献   

13.
The morphological characteristics of smooth muscle cells (SMCs) and their innervation of the suburothelial microvasculature of the mouse bladder were investigated by immunohistochemistry. Whole mount bladder mucosal preparations were immune-stained for α-smooth muscle actin (α-SMA) and/or neuronal markers and examined using confocal laser scanning microscopy. Suburothelial arterioles consisted of α-SMA-immunopositive circular smooth muscle cells, while the venular wall composed of α-SMA-positive SMCs that displayed several processes which extended from their cell bodies to form an extensive meshwork. In larger venules, a complex meshwork of stellate-shaped SMCs were observed. NG2 chondroitin sulphate proteoglycan-immunoreactive cell bodies of capillary pericytes were not immunoreactive for α-SMA. In the rat bladder suburothelial venules, circular SMCs were the dominant cell type expressing α-SMA-immunoreactivity. Since α-SMA-positive SMCs in suburothelial arterioles and venules in the mouse bladder had quite distinct morphologies, the innervation of both vessels could be examined by double labelling for α-SMA and various neuronal markers. Varicose nerve bundles immunoreactive for tyrosine hydroxylase (sympathetic nerves), choline acetyltransferase (cholinergic nerves) or substance P (primary afferent nerves) were all detected along side suburothelial arterioles. Single varicose nerve fibres positive for these three neuronal markers were also detected around the venules. Thus, whole mount preparations are useful when examining the morphology of α-SMA-positive SMCs of the microvasculature in the suburothelium of mouse bladder as well as their relationship with their innervations. In conclusion, arterioles and venules of the bladder suburothelium are the target of sympathetic, cholinergic and primary afferent nerve fibres.  相似文献   

14.
15.
16.
Ischemic stroke is the most serious disease that harms human beings. In principle, its treatment is to restore blood flow supply as soon as possible. However, after the blood flow is restored, it will lead to secondary brain injury, that is, ischemia-reperfusion injury. The mechanism of ischemia-reperfusion injury is very complicated. This study showed that P2X4 receptors in the pyramidal neurons of rat hippocampus were significantly upregulated in the early stage of ischemia-reperfusion injury. Neurons with high expression of P2X4 receptors are neurons that are undergoing apoptosis. Intraventricular injection of the P2X4 receptor antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) and PSB-12062 can partially block neuronal apoptosis, to promote the survival of neurons, indicating that ATP through P2X4 receptors is involved in the process of cerebral ischemia-reperfusion injury. Therefore, identifying the mechanism of neuronal degeneration induced by extracellular ATP via P2X4 receptors after ischemia-reperfusion will likely find new targets for the treatment of ischemia-reperfusion injury, and will provide a useful theoretical basis for the treatment of ischemia-reperfusion injury.  相似文献   

17.
18.
Myocardial infarction (MI) is associated with an angiogenic response, critical for healing and cardiac repair. Using a canine model of myocardial ischemia and reperfusion, we examined the structural characteristics of the evolving microvasculature in healing MI. After 7 days of reperfusion, the infarcted territory was rich in capillaries and contained enlarged, pericyte-poor "mother vessels" and endothelial bridges. During scar maturation arteriolar density in the infarct increased, and a higher percentage of microvessels acquired a pericyte coat (60.4 +/- 6.94% after 28 days of reperfusion vs 30.17 +/- 3.65% after 7 days of reperfusion; p<0.05). The microvascular endothelium in the early stages of healing showed intense CD31/PECAM-1 and CD146/Mel-CAM immunoreactivity but weak staining with the Griffonia simplicifolia lectin I (GS-I). In contrast, after 28 days of reperfusion, most infarct microvessels demonstrated significant lectin binding. Our findings suggest that the infarct microvasculature undergoes a transition from an early phase of intense angiogenic activity to a maturation stage associated with pericyte recruitment and formation of a muscular coat. In addition, in the endothelium of infarct microvessels CD31 and CD146 expression appears to precede that of the specific sugar groups that bind the GS-I lectin. Understanding of the mechanisms underlying the formation and remodeling of the microvasculature after MI may be important in designing therapeutic interventions to optimize cardiac repair.  相似文献   

19.
DNA methylation catalyzed by DNA methyltransferases (DNMTs) and histone deacetylation catalyzed by histone deacetylases (HDACs) play an important role for the regulation of gene expression during carcinogenesis and spermatogenesis. We therefore studied the cell-specific expression of DNMT1 and HDAC1 for the first time in human testicular cancer and impaired human spermatogenesis. During normal spermatogenesis, DNMT1 and HDAC1 were colocalized in nuclei of spermatogonia. While HDAC1 was additionally present in nuclei of Sertoli cells, DNMT1 was restricted to germ cells exhibiting a different expression pattern of mRNA (in pachytene spermatocytes and round spermatids) and protein (in round spermatids). Interestingly, in infertile patients revealing round spermatid maturation arrest, round spermatids lack DNMT1 protein, while pachytene spermatocytes became immunopositive for DNMT1. In contrast, no changes in the expression pattern could be observed for HDAC1. This holds true also in testicular tumors, where HDAC1 has been demonstrated in embryonal carcinoma, seminoma and teratoma. Interestingly, DNMT1 was not expressed in seminoma, but upregulated in embryonal carcinoma. Olufunmilade A. Omisanjo is a scholarship holder of the German Academic Exchange Service (DAAD). Sonja Hartmann is a member of the German Research Foundation (DFG) Research Training Group 533 Cell–cell-Interaction in Reproduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号