首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cortical bone is a composite material composed of hydroxyapatite (HAp) and collagen. As HAp is a crystalline structure, an X-ray diffraction method is available to measure the strain of HAp crystals. However, HAp crystals in bone tissue have been known to have the low degree of crystallization. Authors have proposed an X-ray diffraction method to measure the lattice strain of HAp crystals from the diffusive intensity profile due to low crystallinity. The precision of strain measurement was greatly improved by this method. In order to confirm the possibility of estimating the bone tissue strain with measurements of the strain of HAp crystals, this work investigates the relationship between bone tissue strain on a macroscopic scale and the lattice strain of HAp crystals on a microscopic scale. The X-ray diffraction experiments were performed under tensile loading. Strip bone specimens of 40x6x0.8mm in size were cut from the cortical region of a shaft of bovine femur. A stepwise tensile load was applied in the longitudinal direction of the specimen. By detecting the diffracted X-ray beam transmitted through the specimen, the lattice strain was directly measured in the loading direction. As a result, the lattice strain of HAp crystals showed lower value than the bone tissue strain measured by a strain gage. The bone tissue strain was described with the mean lattice strain of the HAp crystals and the elastic modulus.  相似文献   

2.
Bone tissue is a composite material composed of hydroxyapatite (HAp) and collagen matrix. As HAp is a crystalline structure, an X-ray diffraction method is available to measure the lattice strain of HAp crystals. However, mineral particles of HAp in bone have much lower crystallinity than usual crystalline materials, which show a diffusive intensity profile of X-ray diffraction. It is not easy to determine quantitatively an infinitesimal strain of HAp from the peak position of diffusive profile. In order to improve the accuracy of strain measurement of HAp in bone tissue and to obtain reproducible results, this paper proposes an X-ray diffraction method applied to a diffusive profile for low crystallinity. This method is to estimate the lattice strain of HAp using not a peak position but a whole diffraction profile. In this experiment, a strip specimen of 28 x 8 x 2 mm was made from bone axial, outside circumferential and cross-sectional circumferential region in the cortical bone of bovine femur. The X-ray diffraction measurements were carried out before and after applying an external load. As a result, the precision of strain measurement was much improved by this method. Although a constant value of macroscopic strain was applied in the specimen, the lattice strain had a lower value than the macroscopic strain and had a different value in each specimen.  相似文献   

3.
The excellent performance of the IP as an integrating X-ray area detector makes it well suited to X-ray diffraction and scattering experiments using synchrotron radiation. The IP is particularly useful for biological specimens for which the shortest exposure time or the smallest amount of X-ray dose possible is required. It is also useful for time-resolved measurements of an X-ray diffraction pattern, to complement its uses in static measurements.A combination of two powerful tools, synchrotron radiation and imaging plates, has mutually enhanced the potentials of both. The IP may replace conventional X-ray film and some other X-ray detectors which have been conventionally used in many of the application fields of synchrotron radiation. As examples, it has recently proved to be very promising in experiments of X-ray diffraction under high pressure and high temperature (12) DEXAFS and X-ray diffuse scattering. X-ray microscopy will also benefit from the IP when the spatial resolution is improved to a few tens of microns in FWHM.When more intense X-rays are available from insertion devices installed in planned 6–8 GeV storage rings, the IP system will play a more important role as one of the best X-ray area detectors because of its high DQE and the lack of any instantaneous count-rate limitations.  相似文献   

4.
High-energy synchrotron X-ray scattering (>60 keV) allows noninvasive quantification of internal strains within bone. In this proof-of-principle study, wide angle X-ray scattering maps internal strain vs position in cortical bone (murine tibia, bovine femur) under compression, specifically using the response of the mineral phase of carbonated hydroxyapatite. The technique relies on the response of the carbonated hydroxyapatite unit cells and their Debye cones (from nanocrystals correctly oriented for diffraction) to applied stress. Unstressed, the Debye cones produce circular rings on the two-dimensional X-ray detector while applied stress deforms the rings to ellipses centered on the transmitted beam. Ring ellipticity is then converted to strain via standard methods. Strain is measured repeatedly, at each specimen location for each applied stress. Experimental strains from wide angle X-ray scattering and an attached strain gage show bending of the rat tibia and agree qualitatively with results of a simplified finite element model. At their greatest, the apatite-derived strains approach 2500 με on one side of the tibia and are near zero on the other. Strains maps around a hole in the femoral bone block demonstrate the effect of the stress concentrator as loading increased and agree qualitatively with the finite element model. Experimentally, residual strains of approximately 2000 με are present initially, and strain rises to approximately 4500 με at 95 MPa applied stress (about 1000 με above the strain in the surrounding material). The experimental data suggest uneven loading which is reproduced qualitatively with finite element modeling.  相似文献   

5.
The most widely accepted hypothesis to account for maturational changes in the X-ray diffraction characteristics of bone mineral has been the 'amorphous calcium phosphate theory', which postulates that an initial amorphous calcium phosphate solid phase is deposited that gradually converts to poorly crystalline hydroxyapatite. Our studies of bone mineral of different ages by X-ray radial distribution function analysis and 31P n.m.r. have conclusively demonstrated that a solid phase of amorphous calcium phosphate does not exist in bone in any significant amount. 31P n.m.r. studies have detected the presence of acid phosphate groups in a brushite-like configuration. Phosphoproteins containing O-phosphoserine and O-phosphothreonine have been isolated from bone matrix and characterized. Tissue and cell culture have established that they are synthesized in bone, most likely by the osteoblasts. Physiochemical and pathophysiological studies support the thesis that the mineral and organic phases of bone and other vertebrate mineralized tissues are linked by the phosphomonester bonds of O-phosphoserine and O-phosphothreonine, which are constituents of both the structural organic matrix and the inorganic calcium phosphate crystals.  相似文献   

6.
The crystalline structure of polyester 6 6 was studied by means of X-ray and electron diffraction and real-space electron microscopy. An orthorhombic unit cell containing eight chain segments with a quasi planar zigzag conformation was derived. The chain axis projection could be defined by a small rectangular cell containing only two molecular segments. Simulation of electron diffraction patterns indicates that molecular segments were arranged with azimuthal angles close to +/-46 degrees . X-ray diffraction patterns suggested that the large dimensions of the unit cell were a consequence of a slight shift between neighboring chains that improved the electrostatic interactions. Chain-folded lamellar crystals were obtained by isothermal crystallization of dilute n-hexanol or n-octanol solutions. The crystalline habit was studied, and the influence of temperature was evaluated. A regular folding surface was observed by using polyethylene decoration techniques. Lamellar crystals were easily degraded with different lipases. A preferential enzymatic attack was, in some cases, observed to occur in the crystal edges, giving rise to highly irregular borders with a fringed texture.  相似文献   

7.
8.
High-energy synchrotron X-ray diffraction was used to study internal stresses in bone under in situ compressive loading. A transverse cross-section of a 12-14 year old beagle fibula was studied with 80.7 keV radiation, and the transmission geometry was used to quantify internal strains and corresponding stresses in the mineral phase, carbonated hydroxyapatite. The diffraction patterns agreed with tabulated patterns, and the distribution of diffracted intensity around 00.2/00.4 and 22.2 diffraction rings was consistent with the imperfect 00.1 fiber texture expected along the axis of a long bone. Residual compressive stress along the bone's longitudinal axis was observed in the specimen prior to testing: for 22.2 this stress equaled -95 MPa and for 00.2/00.4 was between -160 and -240 MPa. Diffraction patterns were collected for applied compressive stresses up to -110 MPa, and, up to about -100 MPa, internal stresses rose proportionally with applied stress but at a higher rate, corresponding to stress concentration in the mineral of 2.8 times the stress applied. The widths of the 00.2 and 00.4 diffraction peaks indicated that crystallite size perpendicular to the 00.1 planes increased from t=41 nm before stress was applied to t=44 nm at -118 MPa applied stress and that rms strain epsilon(rms) rose from 2200 muepsilon before loading to 4600 muepsilon at the maximum applied stress. Small angle X-ray scattering of the unloaded sample, recorded after deformation was complete, showed a collagen D-period of 66.4 nm (along the bone axis).  相似文献   

9.
Living bone is considered as adaptive material to the mechanical functions, which continually undergoes change in its histological arrangement with respect to external prolonged loading. Such remodeling phenomena within bone depend on the degree of stimuli caused by the mechanical loading being experienced, and therefore, are specific to the sites. In the attempts of understanding strain adaptive phenomena within bones, different theoretical models have been proposed. Also, the existing literatures mostly follow the measurement of surface strains using strain gauges to experimentally quantify the strains experienced in the functional environment. In this work, we propose a novel idea of understanding site-specific functional adaptation to the prolonged load in bone on the basis of inherited residual strains and structural organization. We quantified the residual strains and amount of apatite crystals distribution, i.e., the degree of orientation, using X-ray diffraction procedures. The sites of naturally existing hole in bone, called foramen, are considered from bovine femur and metacarpal samples. Significant values of residual strains are found to exist in the specimens. Trends of residual strains noted in the specimens are mostly consistent with the degree of orientation of the crystallites. These features explain the response behavior of bone to the mechanical loading history near the foramen sites. Preferential orientation of crystals mapped around a femoral foramen specimen showed furnished tailored arrangement of the crystals around the hole. Effect of external loading at the femoral foramen site is also explained by the tensile loading experiment.  相似文献   

10.
The formation of mixed water-insoluble poorly absorbable crystals between cholesterol (CH) and phytosterols (PS) or phytostanols (PSS) in the intestinal lumen has been considered for a long time as a plausible mechanism of the PS/PSS-induced reduction of serum CH concentration. In this report, we demonstrated with the use of the powder X-ray diffraction (XRD) and the differential scanning calorimetry (DSC) techniques that mixed CH:beta-sitosterol (SI) crystals can be formed by recrystallization of corresponding mixtures from melts and also from mixed CH:SI solutions in triglyceride oil. Formation of mixed CH:SI crystals takes place in a wide interval of CH:SI ratios, from approximately 10 up to approximately 75 wt.% of SI in the mixture. Formation of mixed CH:sitostanol (SS) crystals from melts and solutions in triglyceride oil was also detected, but in a more narrow interval of CH:SS ratios. However, during the lipolysis of model dietary emulsions under in vitro conditions, the formation of crystalline material was not detected due to the relatively high solubility of free sterols/stanols in products of fat hydrolysis. We found that the solubility of free CH, SI, and SS raises upon the increase in the solvent polarity, i.e. free fatty acid > diglycerideoil > triglyceride oil. Therefore, we believe that the cocrystallization mechanism of phytosterol-induced serum CH lowering has relatively low importance, unless the diet is specially designed to include relatively little amounts of dietary fats. The presented experimental evidence demonstrates that it is unlikely that the formation of poorly absorbable mixed crystals largely affects the intestinal absorption of CH and, therefore, that this is a prime mechanism by which PS and PSS effect CH absorption.  相似文献   

11.
Cryocrystallography is used today for almost all X-ray diffraction data collection at synchrotron beam lines, with rotating-anode generators, and micro X-ray sources. Despite the widespread use of flash-cooling to place macromolecular crystals in the cryogenic state, its use can ruin crystals, trips to the synchrotron, and sometimes even an entire project. Annealing of macromolecular crystals takes little time, requires no specialized equipment, and can save crystallographic projects that might otherwise end in failure. Annealing should be tried whenever initial flash-cooling causes an unacceptable increase in mosaicity, results in ice rings, fails to provide adequate diffraction quality, or causes a crystal to be positioned awkwardly. Overall, annealing improves the quality of data and overall success rate at synchrotron beam lines. Its use should be considered whenever problems arise with a flash-cooled crystal. Helium is a more efficient cryogen than nitrogen and will deliver lower temperatures. Experiments suggest that when crystals are cooled with He rather than N2, crystals maintain order and high-resolution data are less affected by increased radiation load. Individually or in combination, these two techniques can enhance the success of crystallographic data collection, and their use should be considered essential for high-throughput programs.  相似文献   

12.
Isolated wet and dried sulfur globules, obtained by osmotic lysis of lysozyme-ethylenediaminetetraacetic acid prepared spheroplasts of Chromatium okenii, C. weissei, and C. warmingii, were studied by polarizing microscopy and X-ray diffraction. When viewed through crossed Nicol prisms, the sulfur globules, whether in the cell or isolated in a pure, wet state, had a characteristic maltese cross appearance. The observation that rotation of the mount did not change the orientation of the arms suggested a symmetrical radial arrangement of the birefringent units. X-ray diffraction patterns of freshly isolated, wet sulfur globules gave two broad and diffuse diffraction rings with maxima at 0.36 and 0.52 nm. This pattern closely resembled the diffraction pattern of liquid sulfur. When allowed to stand in the wet state, the sulfur globules eventually converted into crystalline orthorhombic sulfur after passing through an unstable crystalline phase not previously described by X-ray diffraction. Vacuum drying of the sulfur globules accelerated the change into crystalline orthorhombic sulfur.  相似文献   

13.
Collagen: the organic matrix of bone   总被引:4,自引:0,他引:4  
Collagen is the principal organic matrix in bone. The triple helical region of the molecule is 1014 amino acids long. In fibrils these molecules are staggered axially by integers of 234 residues or 68 nm (D). This axial shift occurs by self-assembly and can be understood in terms of a periodicity in the occurrence of apolar and polar residues in the amino acid sequence. Because the molecular length L = 4.47 D, there are gaps 1.5 X 36.5 nm regularly arrayed throughout the fibrils. The three-dimensional molecular arrangement is a quasi-hexagonal lattice with three distinct values for the principal interplanar spacings. Analysis of the intensity distribution in the medium-angle X-ray diffraction patterns from tendons has produced the following picture of the molecular arrangement in fibrils (Fraser et al. 1983). The molecular helices have a coherent length of 32 nm and are tilted parallel to a specific place within the lattice. A regular azimuthal interaction exists between these helices. This crystalline region could be the overlap region with a non-crystalline gap region. However, the gap is still regular axially and the molecular helices retain their structure; their lateral packing is perturbed although they retain a 'gap'. Neutron and X-ray scattering experiments have shown that calcium hydroxyapatite crystals occur in the gap and are nucleated at a specific though unknown location within the gap. The c-axis of the apatite crystals is parallel to the fibril axis and its length c = 0.688 nm is close to the axial periodicity in a protein with an extended beta-conformation. If the telopeptides at the end of a collagen molecule do have this conformation they would either have a highly heterogeneous conformation or exist in a folded manner because the overall length of the telopeptides is shorter than a regular collagen repeat of 0.029 nm would allow.  相似文献   

14.
Supercoiled DNA is interwound in liquid crystalline solutions.   总被引:3,自引:1,他引:2       下载免费PDF全文
J Torbet  E DiCapua 《The EMBO journal》1989,8(13):4351-4356
Two structures have been proposed for supercoiled DNA: it is idealized either as a toroidal ring or as a rod of two interwound duplex chains. The latter model is the most widely depicted but the evidence remains controversial. We have worked with monomers and dimers of two plasmids, pUC8 and pKS414, of similar size and natural superhelical density. pKS414 contains a bend promoting sequence whereas pUC8 does not. In concentrated solutions these plasmids form a partially ordered liquid crystalline phase which is found, using neutron diffraction, to consist of a hexagonally packed assembly of parallel rod-like particles. This shape strongly suggests an interwound conformation for which some structural parameters are deduced. The mass/unit length obtained by combining the area of the hexagonal lattice and the concentration is approximately 3.6 times that of linear DNA. This implies a shallow superhelical pitch angle approximately 36 degrees which, when combined with the known number of supercoil turns, yields the pitch approximately 360 A and radius approximately 80 A for the supercoil. Oriented X-ray fibre diffraction patterns at 92% relative humidity indicate a B type duplex structure. Nicked circular plasmids also form liquid crystals but their behaviour, as a function of concentration, differs from that of the superhelical plasmids.  相似文献   

15.
Bone is a composite biomaterial, which is formed, when proteins constituting collagen fibers attract calcium, phosphate and hydroxide ions in solution to nucleate atop the fibers. It grows into a hard structure of tiny crystallites of hydroxyapatite, aligned along the long axis of collagen fibers. The present work reports the stimulating effect of static magnetic field on microstructure and mineralization process of bone repair. A unilateral transverse fracture of mid-shaft of metacarpal was surgically created in healthy goats under thiopental sedation and xylocaine analgesia. Two bar magnets (approximately 800 gauss/cm2 field strength) were placed across the fracture line at opposite pole alignment immobilized in Plaster of Paris (POP) splint bandage for static magnetic field stimulation. Radiographs were taken at weekly intervals up to 45 days. Results show that formation of extra-cellular matrix and its microstructure can be influenced by non-invasive physical stimulus (magnetic field) for achieving an enhanced osteogenesis, leading to quicker regeneration of bone tissue in goats. X-ray diffraction (XRD) patterns of treated (magnetic field-exposed) and control samples revealed the presence and orientation of crystalline structures. Intensity of diffraction peaks corresponding to 310 and 222 planes were enhanced with respect to 211 families of reflections, indicating preferential alignment of the crystals. Also, the percent crystallinity and crystal size were increased in treated samples. The study provides a biophysical basis for augmented fracture healing under the influence of semi-aligned static magnetic field applied across the fracture line.  相似文献   

16.
As a first step in investigations of the properties of crystalline enzymes, the binding of indole, N-formyl-l-phenylalanine, and N-formyl-l-p-iodophenylalanine to α-chymotrypsin crystals, and the binding of indole to tosyl-α-chymotrypsin crystals, has been studied. The methods used were spectrophotometric measurements of the concentration of indole in the supernatant, or measurements of the concentration of radioactively labeled indole in both the supernatant and the crystal. The dissociation constants of the specific binding site of the crystalline enzyme have been determined for indole and N-formyl-l-phenylalanine. It was found that indole does not bind to tosyl-α-chymotrypsin crystals and that N-formyl-p-iodophenylalanine does not bind to the substrate binding site of the crystalline enzyme.The information obtained from these simple equilibrium measurements is in agreement with X-ray diffraction studies. The approach is, therefore, capable of determining whether or not compounds bind to the active site of a crystalline enzyme, and whether the occupancy of this site is sufficient for structure determinations using X-ray diffraction methods.  相似文献   

17.
Summary Optical diffraction analysis was carried out on crystalline inclusions in the rough endoplasmic reticulum of the insulin and somatostatin cells in the islet organ of the hagfish. A striking difference in crystalline arrangement was observed between the inclusions of the insulin and somatostatin cells. The crystallographic arrangement of the inclusions observed in situ in the insulin cells differed from that previously found by means of X-ray diffraction analyses of hagfish insulin crystals formed in vitro.  相似文献   

18.
The X-ray diffraction method of Ruland (Acta Crystallogr. 14 (1961) 1180-1185) used for the crystallinity determination of synthetic polymers was applied to the mineral present in mature rat cortical bone. The results obtained were compared with those obtained by other X-ray methods of Harper and Posner and Wakelin, Virgin and Crystal. It was concluded that the method of Ruland gives a more reliable determination of the crystallinity of bone mineral than other methods.  相似文献   

19.
Comparative X-ray diffraction analysis of 5,6,7,9-tetra-O-acetyl-4,8-anhydro-1,3-dideoxy-D-glycero-L-gluco-nonulose (1) and a structurally related analog, 1,2,3,4,6-penta-O-acetyl-beta-D-galactopyranose (2), are reported. Both crystals have one molecule in the unit cell and the pyranose rings in both exist in the 4C1 conformation.  相似文献   

20.
High energy synchrotron X-ray scattering was developed for reconstruction of specimen cross-sections. The technique was applied to a model specimen of cortical bone containing a capillary tube of silicon, and reconstructions were produced with either full diffraction rings or texture-related subsets of a given ring. The carbonated apatite (cAp) 00.2 and 22.2 reconstructions and the Si 311 reconstructions agreed with absorption-based reconstructions from the measured X-ray transmissivity recorded during diffraction pattern acquisition and from reconstructions produced subsequently of the same specimen using a commercial microCT (microComputed Tomography) scanner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号