首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
D H Edgar 《Mutation research》1985,157(2-3):199-204
Mutagenic potency at the thymidine kinase (TK) locus in mouse lymphoma L5178Y cells (expressed as induced trifluorothymidine (TFT)-resistant mutants/total dose) was assessed for 4 agents (ethyl methanesulphonate (EMS), benzidine, 1,8-dinitropyrene (1,8-DNP) and ICRF 159) using short (3-4 h) and long (21-24 h) exposure times. The mutagenic potency of EMS was found to be essentially independent of concentration and exposure time when tested over a cytotoxic range consistent with routine testing procedures. Similar results were obtained with benzidine but for both 1,8-DNP and ICRF 159 mutagenic potency was found to be highly dependent on the concentration and exposure time. 1,8-DNP failed to induce any significant increases in mutant frequency when tested at concentrations up to 5 micrograms/ml using short exposure times, whereas the compound was active at concentrations as low as 0.1 microgram/ml when the exposure period was extended to 21 h. Under the latter conditions, however, the molar potency of 1,8-DNP was found to be inversely related to concentration over a range extending from 0.1 to 5 micrograms/ml. ICRF 159 induced increases in the frequency of TFT-resistant mutants using short or long exposure times. When a short exposure time was used, however, the mutagenic potency of the antitumour agent decreased with increasing concentration between 1 and 500 micrograms/ml. Although possible explanations can be offered to account for these observations the results illustrate potential problems which may arise in this system when comparing mutagenic potency values for a range of compounds with a view to assessing relative risk.  相似文献   

2.
Hypoxanthine (Hx), thymidine (TdR) and deoxycytidine (CdR), at concentrations of 10(-5) M increased the yield of 8-azaguanine-resistant (AzGr) mutants induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in cultured Chinese hamster V79 cells. The cytotoxicity of MNNG was increased 2-fold in the presence of Hx, and more than 10-fold in the presence of TdR. This cytotoxic effect of TdR was abolished by equal concentrations of CdR, which by itself did not increase the cytotoxicity of MNNG. However, the yield of MNNG-induced AzGr colonies was increased 2--10-fold in the presence of both CdR and TdR. The AzGr colonies displayed phenotypes characteristic of hypoxanthine: guaninephosphoribosyltransferase-deficient (HGPRT-) mutants, or indicative of mutant HGPRT with altered substrate affinities. The nucleosides did not affect the growth or expression time of the HGPRT- mutants; the same extent of alkali-labile DNA damage occurred in cells treated with alkylating agents in the presence and absence of TdR and CdR; and the increase in mutation frequency in the presence of these nucleosides occurred not only with MNNG, but also with ethylating agents. Nucleosides treated with MNNG were not mutagenic, and treatment of the cells with TdR and CdR only prior to treatment with MNNG or only during selection with AzG did not increase the induced mutation frequency. Therefore, the interpretation is proposed that CdR, TdR and Hx produce nucleotide-pool imbalances that increase lethal and mutagenic errors of replication of alkylated DNA.  相似文献   

3.
The toxic and mutagenic activities of five antiherpesvirus agents to HeLa cells and herpes simplex virus type 1 (HSV-1) were investigated. 5-Iodo-2'-deoxyuridine (IDU) and 9-beta-D-arabinofuranosyl-adenine (araA) showed very potent inhibitory effects on cell growth and the cloning efficiency of HeLa cells, whereas 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU), E-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and 9-(2-hydroxyethoxymethyl)guanine (ACV) showed less inhibitory effect. 50% inhibitory doses of BV-araU and BVDU for cell growth were 657 and 253 micrograms/ml, respectively. Although the growth inhibitory activity of BVDU was very weak, as above, the mutagenic activity of this drug to the cells, estimated by induction of colchicine-resistant mutants, was observed to be 4 micrograms/ml, which was a markedly smaller dose than the inhibitory dose for cell growth, and the highest frequency of mutation of the cells was shown at 100 micrograms/ml of BVDU. This activity was more potent than that of IDU. No mutagenic activity of BV-araU, araA and ACV to cells was observed within the concentration range of 1-800 micrograms/ml. IDU showed high mutagenic activity to HSV-1 growing in human embryo lung fibroblasts, and IDU-resistant mutants were induced at a high frequency. BVDU also induced a small amount of BVDU-resistant mutant virus, although this drug induced many mutant cells. No mutagenic activity of BV-araU, araA and ACV to HSV-1 was observed.  相似文献   

4.
The mutagenic specificity of (oh)4Cyd was examined with T4rII phage mutants which allows for discrimination between AT→GC and GC→AT base transitions. AT→GC transitions were induced with a frequency 1–2 orders of magnitude higher than GC→AT transitions. The mechanism of this preferential transition pathway is discussed in the light of base-analogue mutagenesis.  相似文献   

5.
R S Gupta  B Singh 《Mutation research》1983,113(5):441-454
Stable mutants exhibiting high degree of resistance (100-1000-fold) to various nucleoside analogs viz, toyocamycin, tubercidin, 6-methyl mercaptopurine riboside (6-MeMPR) and pyrazofurin, are obtained at similar frequency (congruent to 1 X 10(-4] in CHO cells. The mutants resistant to any of the above analogs exhibit similar degree of cross-resistance to the other three nucleoside analogs, and all of the mutants examined contained no measurable activity of the purine salvage pathway enzyme adenosine kinase (AK) which converts these analogs to their phosphorylated derivatives. These results indicate that very similar mutants are selected using any of these analogs. The recovery of AK- mutants in CHO cells is not affected by cell density (up to at least 5 X 10(5) cells per 100-mm diameter dish) and after treatment with mutagen(s) maximum mutagenic effect is observed after 7-8 days, which then remains unchanged for the next several days. Treatment of CHO cells with a number of mutagenic agents e.g. ethyl methanesulfonate, ICR170, ultraviolet light, and benzo[a]pyrene, led to a nearly linear concentration-dependent increase in the frequency of the AK- mutants in cultures. The mutagenic response of the AK locus to these agents compared favorably with that of the HGPRT locus (6-thioguanine resistance) within the same experiments. These results show that the selection system for AK- mutants provides an additional valuable genetic marker for quantitative mutagenesis studies in CHO cells.  相似文献   

6.
A high frequency of morphogenetic mutants of Dictyostelium discoideum can be induced by treatment with MNNG under conditions which result in relatively low cell killing. Six temperature-sensitive growth mutants induced by this treatment were isolated by replica plating. Among these, five showed spontaneous reversion rates of 10(-4) to 10(-5). The mutagenic activity of ems, measured for the induction of both morphogenetic and temperature-sensitive mutants, was weaker than that of MNNG and UV radiation. High frequencies of morphogenetic mutants were obtained only with doses of UV irradiation that resulted in high killing of cells or spores. Caffeine, at concentrations that slightly decreased the growth rate of amoebae in axenic medium, induced morphogenetic defects and also enhanced the mutagenic effect of UV irradiation. However, all the aggregateless clones derived from caffeine treatment that were studied reverted to the wild-type phenotype after a variable number of clonal re-isolations.  相似文献   

7.
Forward mutations induced by the ultimate carcinogen N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF) in the tetracycline resistance gene carried on plasmid pBR322 are shown to be dependent upon the induction of the host SOS functions in wild-type and umuC Escherichia coli cells. The mutation frequency in the umuC strain is equal to about 40% of the mutation frequency observed in the umu+ background. In the excision-repair-deficient uvrA mutant strain the mutagenic response is the same as in SOS-induced wild-type cells whether or not the uvrA bacteria are SOS-induced. Equal mutation frequencies are obtained in both the wild-type and the uvrA strains for equal modification levels although the survival of AAF-modified plasmid DNA is greatly reduced in the uvrA strain as compared to the wild-type strain. Sequence analysis of the mutations reveals that more than 90% of the N-Aco-AAF-induced mutations are frameshift mutations. Two types of mutational hotspots are observed occurring either at repetitive sequences or at non-repetitive sequences. Both types of mutants appear at similar locations and frequencies in both the wild-type and the uvrA strains. On the other hand, only the non-repetitive sequence mutants are obtained in the umuC background. These non-repetitive sequence mutants preferentially occur within the sequence 5' G-G-C-G-C-C 3' (the NarI restriction enzyme recognition sequence). The analysis of the -AAF binding spectrum to the same DNA fragment shows that there is no direct correlation between the modification spectrum and the mutation spectrum. We suggest that certain sequences are "mutation-prone" in the sense that only these sequences can be efficiently mutated as the result of an active processing mediated by specific proteins. When a sequence is said to be mutation-prone it probably corresponds to a particular structure that is induced within this sequence as a result of the binding to the DNA of the mutagen. This sequence-specific conformational change is the substrate for the protein(s) that fixes the mutation. The mutagenic processing pathway(s) is part of the cellular response to DNA-damaging agents (the so-called SOS response). Two pathways for frameshift mutagenesis are suggested by the data: an umuC-dependent pathway, which is involved in the mutagenic processing of lesions within repetitive sequences; an umuC-independent pathway responsible for the fixation of mutations within specific non-repetitive sequences.  相似文献   

8.
Bott, K. F. (The University of Chicago, Chicago, Ill.), and R. Davidoff-Abelson. Altered sporulation and respiratory patterns in mutants of Bacillus subtilis induced by acridine orange. J. Bacteriol. 92:229-240. 1966.-The addition of acridine orange to vegetative cultures of Bacillus subtilis induces the formation of sporulation mutants at a frequency of 20% or greater. These mutants are grouped into seven categories which reflect their different morphological properties. They are altered in their vegetative metabolism, as indicated by abnormal growth on synthetic media. Sporulation of these mutants is impaired at several levels, all of which are stable upon repeated subculturing. The initial stages of sporulation which require no increased metabolic activity (proteolytic enzyme activity and antibiotic production) are functional in all strains, but glucose dehydrogenase activity, an enzyme associated with early synthetic functions in spore synthesis, is significantly reduced. Reduced nicotinamide adenine dinucleotide oxidase is slightly depressed. It is suggested that acridine orange interacts with a cellular constituent controlling respiration and consequently prevents an increased metabolic activity that may be associated with normal spore synthesis.  相似文献   

9.
The mutagenic and cytotoxic effects of 4 antineoplastic drugs, vinblastine, vincristine, adriamycin and nitrogen mustard and of several monofunctional alkylating agents have been assayed in V79 Chinese hamster cells. Vincristine, vinblastine and nitrogen mustard did not significantly increase the frequency of TGRHGPRT? mutants but were all highly cytotoxic. Adriamycin and the monofunctional alkylating agents were all significantly mutagenic even at the lowest doses tested (approx. 70 % survival level). Induced mutant frequency increased linearly with increasing dose whereas dose-response curves for cytotoxicity for these effective mutagens invariably showed a shoulder followed by an exponential decline. At equitoxic doses the relative mutagenic effectiveness was MNU ENU EMS MMS ? DMS. MNU was approx. 20 times more effective than MMS and DMS.Measurement of the total amount of alkylation and the relative amounts of reaction with individual DNA bases at approx. equitoxic doses of MNU and DMS indicated a significantly higher O6/N7 ratio after MNU (0.15) than after DMS (0.005). However, approx. equal numbers of mutants/105 cells/μM O6-Meguanine were induced by these 2 agents. These results support previous conclusions, that mutagenic and cytotoxic responses are independent in V79 cells.  相似文献   

10.
Cadmium is a strong mutagen that acts by inhibiting DNA mismatch repair, while its toxic effect seems to be related to an indirect oxidative stress that involves glutathione (GSH) mobilization. Among the roles of GSH is the protection of proteins against oxidative damage, by forming reversible mixed disulfides with cysteine residues, a process known as protein glutathionylation and catalyzed by glutaredoxins (Grx). In this current study, Saccharomyces cerevisiae cells deficient in GRX2, growing in 80 muM CdSO(4), showed high mitochondrial mutagenic rate, determined by frequency of mutants that had lost mitochondrial function (petite mutants), high tolerance and lower apoptosis induction. The mutant strain also showed decreased levels of glutathionylated-protein after cadmium exposure, which might difficult the signaling to apoptosis, leading to increased mutagenic rates. Taken together, these results suggest that Grx2 is involved with the apoptotic death induced by cadmium, a form of cellular suicide that might lead of removal of mutated cells.  相似文献   

11.
A procedure for the quantitative determination of induced streptomycin-resistant mutants in E. coli was applied to study and compare mutation induction by the organophosphate dichlorvos and by methyl methanesulfonate (MMS). Both compounds increased the frequency of mutants even under conditions where no inactivation of cell was observed. Mutation induction by these agents as a function of both concentration and exposure time was measured. The dose-response curves found with both mutagens were non-linear; atp higher doses more mutants were induced per unit dose than at lower doses. Possible relationships between dose-effect curves and the chemical nature of alkylating mutagenic agents are discussed.  相似文献   

12.
We have analyzed five Mod-1 (malic enzyme) mutants at the molecular and biochemical level. Four of these mutants, three electrophoretic variants and one null mutant, were induced by ethylnitrosourea (ENU). Another null mutant was the result of a spontaneous mutation. All of these mutations were heritable in a Mendelian fashion and viable in the homozygous condition. Restriction endonuclease and Southern blot analysis revealed that the spontaneous null mutant possessed an altered restriction fragment banding pattern. All of the ENU-induced mutants possessed normal restriction fragment banding patterns. All 5 mutants produced normal levels of Mod-1-specific mRNA. Only the spontaneous null mutant produced mRNA with altered size, which was consistent with the altered DNA-banding pattern. MOD-1 enzyme activity levels were normal in the three ENU-induced mutants with altered electrophoretic mobility. Enzyme activity was significantly lower than normal in tissues from animals homozygous for the null alleles, however, using Western blot analysis, low but significant levels of MOD-1 protein in Mod-1 null homozygotes were detected.  相似文献   

13.
Ni2+ ions exhibit a mutagenic effect on the bacterial strainCorynebacterium sp. 887 (hom). The mutagenic activity of the divalent nickel was demonstrated by both the simplified fluctuation test and the so-called clone method. However, when using the clone method and low nickel concentrations the frequency of induced mutants decreases considerably as compared with the control and Ni2+ ions have an antimutagenic effect under these conditions.  相似文献   

14.
The mutagenic effect of nitrosoguanidine onMycobacterium phlei PA   总被引:4,自引:0,他引:4  
The effect of nitrosoguanidine on the induction of three types of mutagenic changes inMycobacterium phlei PA was studied. The mutagenic changes included: change of prototrophy to auxotrophy, conversion of sensitivity to isoniazide to resistańce and sensitivity to streptomycin to resistance. The induction of auxotrophic mutants was successful especially when using NTG at a concentration of 1000 μg/ml. A total of 100 auxotrophs was obtained out of which only 13 were sufficiently stable to be used in further studies. Amino acid requirements especially the glycine(serine) type characterized more than half of all auxotrophic mutants obtained. A group of mutants requiring purines also included a high number of mutants. A considerable spontaneous reversion frequency was found in both groups of auxotrophs. The kinetics of the induction of INH-resistant mutants by nitrosoguanidine at a concentration of 1000 μg/ml was studied and a high induction of these mutants, particularly at high lethal effect of the mutagen found. The mutability of the STMr marker was relatively low in the present model microorganism as compared with the two markers mentioned earlier.  相似文献   

15.
Summary Galactose negative mutations are described which reduce the maximum expression of all three gal genes about 100-fold. The residual enzyme synthesis is not or only slightly inducible.These pleiotropic mutations map in the control region of the gal operon. No recombination is observed between these mutations. All mutants revert spontaneously to a Gal+ phenotype. In some mutations wildtype-like as well as constitutive revertants are obtained. The frequency of reversion can be increased by nitrosoguanidine (NG) in all mutants. The revertants, induced by this mutagen, are of a constitutive type.  相似文献   

16.
Wan H  Li Y  Fan Y  Meng F  Chen C  Zhou Q 《Analytical biochemistry》2012,420(2):163-170
Site-directed mutagenesis has become routine in molecular biology. However, many mutants can still be very difficult to create. Complicated chimerical mutations, tandem repeats, inverted sequences, GC-rich regions, and/or heavy secondary structures can cause inefficient or incorrect binding of the mutagenic primer to the target sequence and affect the subsequent amplification. In theory, these problems can be avoided by introducing the mutations into the target sequence using mutagenic fragments and so removing the need for primer-template annealing. The cassette mutagenesis uses the mutagenic fragment in its protocol; however, in most cases it needs to perform two rounds of mutagenic primer-based mutagenesis to introduce suitable restriction enzyme sites into templates and is not suitable for routine mutagenesis. Here we describe a highly efficient method in which the template except the region to be mutated is amplified by polymerase chain reaction (PCR) and the type IIs restriction enzyme-digested PCR product is directly ligated with the mutagenic fragment. Our method requires no assistance of mutagenic primers. We have used this method to create various types of difficult-to-make mutants with mutagenic frequencies of nearly 100%. Our protocol has many advantages over the prevalent QuikChange method and is a valuable tool for studies on gene structure and function.  相似文献   

17.
The DNA polymerases and thymidine kinases induced by three drug-resistant mutants of herpes simplex virus type 1 (S1, Tr7, and B3) and their common parent strain, SC16, have been purified and their properties compared. No significant differences were seen in the affinities of the polymerases for TTP and dGTP, or for the triphosphates of 9-(2-hydroxyethyloxymethyl)guanine (acyclovir) or (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVdU) (drugs used in their isolation). In contrast all three mutants induced abnormal thymidine kinases. Those induced by the acyclovir-resistant mutants, S1 and Tr7, showed reduced affinities for thymidine, acyclovir, and also BVdU. Thymidine kinase induced by the BVdU-resistant mutant B3 showed reduced affinity for BVdU, but its affinities for thymidine and acyclovir were similar to those of the wild type enzyme. Thus, it appears that these variants of herpes simplex virus express altered thymidine kinases with impaired ability to phosphorylate particular nucleoside analogue drugs and these characteristics probably account for the drug resistance of the viruses. This strategy for resistance is important as it may result in variants with undiminished pathogenicity.  相似文献   

18.
TFT is an effective selective agent for TK-deficient mutants of L5178Y TK+/- -3.7.2C mouse lymphoma cells. Mutants can be classified by colony size into small colonies (many of which show readily observable chromosome abnormalities associated with chromosome 11--the location of the TK gene) and large colonies (which may represent events affecting only the expression of the TK gene). The precise nature of the induced damage causing the loss of the TK-enzyme activity for both mutant type is not known and is currently under investigation. The hypomethylating agent 5-azacytidine can be utilized to investigate the possibility that mutants might be the result of a suppressed rather than an altered TK gene. Mutant cell lines are treated with 5-azacytidine and then evaluated for re-expression of the TK enzyme as measured by resistance to THMG. In these studies, 11 mutants have been evaluated. None of the 11, including 10 small-colony mutants (6 with chromosome 11 translocations) and 1 large-colony mutant, show a high conversion to TK competency following 5-azacytidine treatment.  相似文献   

19.
The carcinogenic nitrosamines, N-nitrosomethylaniline (NMA) and N-nitrosodiphenylamine (NDphA), which have been previously reported negative or very weakly mutagenic in the Salmonella/microsome assay, were found to be mutagenic in the hisG428 Salmonella strain, TA104. NMA was moderately potent and NDphA was about 10% as potent. Mutagenesis by both compounds was dependent on the uvrB mutation and enhanced in strains harboring the plasmid, pKM101. The mutational specificities of NMA and NDphA for base-pair substitutions were determined by assaying their activities in several mutants which are reverted by a limited number, or a single type of base-pair substitution mutation, and additionally by subclassification of revertants. NMA induced predominantly AT----CG transversions and NDphA induced AT----TA transversions. The specificity of NMA and NDphA for mutagenesis at AT base pairs and the lack of sensitivity of the previously employed hisG46 strains for these base changes may be the reason for the previous reports on the lack of mutagenic activity of these compounds. This specificity is quite unusual for nitrosamines and is consistent with the hypothesis that NMA and NDphA lead to DNA damage of different nature than that produced by other nitrosamines.  相似文献   

20.
Abstract The hypothesis that rifampicin resistance mutations (possibly leading to altered RNA polymerases) have a pleiotropic effect on symbiotic nitrogen fixation was tested using the Rhizobium japonicum -soybean symbiosis. A total of 20 spontaneous rifampicin-resistant mutants of R. japonicum strain 110 were analyzed biochemically. RNA polymerase assays revealed that the enzyme from 15 mutants was indeed rifampicin-insensitive. Two of these mutants were found to possess an enzyme with an electrophoretically altered β subunit. All rifampicin-resistant mutants were able to form nodules on soybeans and fix nitrogen symbiotically; free-living nitrogen fixation under microaerophilic culture conditions was also unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号