首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ubiquitination is a post-translational modification that tags proteins for proteasomal degradation. In addition, there is a growing appreciation that ubiquitination can influence protein activity and localization. Ste7 is a prototype MAPKK in yeast that participates in both the pheromone signaling and nutrient deprivation/invasive growth pathways. We have shown previously that Ste7 is ubiquitinated upon pheromone stimulation. Here, we show that the Skp1/Cullin/F-box ubiquitin ligase SCFCdc4 and the ubiquitin protease Ubp3 regulate Ste7 ubiquitination and signal specificity. Using purified components, we demonstrate that SCFCdc4 ubiquitinates Ste7 directly. Using gene deletion mutants, we show that SCFCdc4 and Ubp3 have opposing effects on Ste7 ubiquitination. Although SCFCdc4 is necessary for proper activation of the pheromone MAPK Fus3, Ubp3 is needed to limit activation of the invasive growth MAPK Kss1. Finally, we show that Fus3 phosphorylates Ubp3 directly and that phosphorylation of Ubp3 is necessary to limit Kss1 activation. These results reveal a feedback loop wherein one MAPK limits the ubiquitination of an upstream MAPKK and thereby prevents spurious activation of a second competing MAPK.  相似文献   

2.
We are investigating the transport and turnover of the multispanning membrane protein Ste6. The Ste6 protein is a member of the ABC-transporter family and is required for the secretion of the yeast mating pheromone a-factor. In contrast to the prevailing view that Ste6 is a plasma membrane protein, we found that Ste6 is mainly associated with internal membranes and not with the cell surface. Fractionation and immunofluorescence data are compatible with a Golgi localization of Ste6. Despite its mostly intracellular localization, the Ste6 protein is in contact with the cell surface, as demonstrated by the finding that Ste6 accumulates in the plasma membrane in endocytosis mutants. The Ste6 protein which accumulates in the plasma membrane in endocytosis mutants is ubiquitinated. Ste6 is thus the second protein in yeast besides MAT alpha 2 for which ubiquitination has been demonstrated. Ste6 is a very unstable protein (half-life 13 min) which is stabilized approximately 3-fold in a ubc4 ubc5 mutant, implicating the ubiquitin system in the degradation of Ste6. The strongest stabilizing effect on Ste6 is, however, observed in the vacuolar pep4 mutant (half-life > 2 h), suggesting that most of Ste6 is degraded in the vacuole. Secretory functions are required for efficient degradation of Ste6, indicating that Ste6 enters the secretory pathway and is transported to the vacuole by vesicular carriers.  相似文献   

3.
R K?lling  S Losko 《The EMBO journal》1997,16(9):2251-2261
Upon block of endocytosis, the a-factor transporter Ste6 accumulates in a ubiquitinated form at the plasma membrane. Here we show that the linker region, which connects the two homologous halves of Ste6, contains a signal which mediates ubiquitination and fast turnover of Ste6. This signal was also functional in the context of another plasma membrane protein. Deletion of an acidic stretch in the linker region ('A-box') strongly stabilized Ste6. The A-box contains a sequence motif ('DAKTI') which resembles the putative endocytosis signal of the alpha-factor receptor Ste2 ('DAKSS'). Deletion of the DAKTI sequence also stabilized Ste6 but, however, not as strongly as the A-box deletion. There was a correlation between the half-life of the mutants and the degree of ubiquitination: while ubiquitination of the deltaDAKTI mutant was reduced compared with wild-type Ste6, no ubiquitination could be detected for the more stable deltaA-box variant. Loss of ubiquitination seemed to affect Ste6 trafficking. In contrast to wild-type Ste6, which was associated mainly with internal membranes, the ubiquitination-deficient mutants accumulated at the plasma membrane, as demonstrated by immunofluorescence and cell fractionation experiments. These findings suggest that ubiquitination is required for efficient endocytosis of Ste6 from the plasma membrane.  相似文献   

4.
Previous experiments suggested that trafficking of the a-factor transporter Ste6 of Saccharomyces cerevisiae to the yeast vacuole is regulated by ubiquitination. To define the ubiquitination-dependent step in the trafficking pathway, we examined the intracellular localization of Ste6 in the ubiquitination-deficient doa4 mutant by immunofluorescence experiments, with a Ste6-green fluorescent protein fusion protein and by sucrose density gradient fractionation. We found that Ste6 accumulated at the vacuolar membrane in the doa4 mutant and not at the cell surface. Experiments with a doa4 pep4 double mutant showed that Ste6 uptake into the lumen of the vacuole is inhibited in the doa4 mutant. The uptake defect could be suppressed by expression of additional ubiquitin, indicating that it is primarily the result of a lowered ubiquitin level (and thus of reduced ubiquitination) and not the result of a deubiquitination defect. Based on our findings, we propose that ubiquitination of Ste6 or of a trafficking factor is required for Ste6 sorting into the multivesicular bodies pathway. In addition, we obtained evidence suggesting that Ste6 recycles between an internal compartment and the plasma membrane.  相似文献   

5.
6.
Mutation of the mouse Usp14 gene, encoding the homolog of yeast deubiquitinating enzyme Ubp6, causes ataxia. Here we show that deletion of the UBP6 gene in Saccharomyces cerevisiae causes sensitivity to a broad range of toxic compounds and antagonizes phenotypic expression and de novo induction of the yeast prion [PSI+], a functionally defective self-perpetuating isoform of the translation termination factor Sup35. Conversely, overexpression of ubiquitin (Ub) increases phenotypic expression and induction of [PSI+] in the wild type cells and suppresses all tested ubp6Delta defects, indicating that they are primarily due to depletion of cellular Ub levels. Several lines of evidence suggest that Ubp6 functions on the proteasome. First, Ub levels in the ubp6Delta cells can be partly restored by proteasome inhibitors, suggesting that deletion of Ubp6 decreases Ub levels by increasing proteasome-dependent degradation of Ub. Second, fluorescence microscopy analysis shows that Ubp6-GFP fusion protein is localized to the nucleus of yeast cell, as are most proteasomes. Third, the N-terminal Ub-like domain, although it is not required for nuclear localization of Ubp6, targets Ubp6 to the proteasome and cannot be functionally replaced by Ub. The human ortholog of Ubp6, USP14, probably plays a similar role in higher eukaryotes, since it fully compensates for ubp6Delta defects and binds to the yeast proteasome. These data link the Ub system to prion expression and propagation and have broad implications for other neuronal inclusion body diseases.  相似文献   

7.
8.
A general pathway for the internalization of plasma membrane proteins that involves phosphorylation, ubiquitination, recognition and endocytosis has recently emerged from multiple studies in yeast. We refer to this series of events as the PURE pathway. Here we investigate whether the yeast a-factor transporter Ste6p, an ATP-binding cassette protein, utilizes the PURE pathway. Deletion of a 52-amino acid sequence (the 'A box') within the linker region of Ste6p has previously been shown to block ubiquitination and endocytosis (Kolling R, Losko S. EMBO J 1997; 16:2251-2261). Using wild-type and mutant forms of GFP-tagged Ste6p, we identified two residues (T(613) and S(623)) within the A box as likely sites of Ste6p phosphorylation important for internalization. Mutation of these residues to alanine blocked ubiquitination and endocytosis of Ste6p, similar to the effect of deleting the entire A box, while substitution with glutamic acid (to mimic phosphorylation) suppressed the ubiquitination and endocytic defects. Importantly, a translational fusion of monoubiquitin to the C-terminus of Ste6p-T(613)A, S(623)A or Ste6p-DeltaA restored endocytosis, providing strong evidence that the role of phosphorylation is to direct ubiquitination, which in turn is a critical signal for Ste6p internalization. We also identified multiple (five) lysine residues in the linker that are important for Ste6p ubiquitination. Our results demonstrate that Ste6p follows the PURE pathway and that GFP-tagged Ste6p provides a powerful model protein for studies of endocytosis and post-endocytic events in yeast.  相似文献   

9.
The yeast a-factor receptor (encoded by STE3) is subject to two modes of endocytosis, a ligand-dependent endocytosis as well as a constitutive, ligand-independent mode. Both modes are associated with receptor ubiquitination (Roth, A.F., and N.G. Davis. 1996. J. Cell Biol. 134:661–674) and both depend on sequence elements within the receptor''s regulatory, cytoplasmically disposed, COOH-terminal domain (CTD). Here, we concentrate on the Ste3p sequences required for constitutive endocytosis. Constitutive endocytosis is rapid. Receptor is synthesized, delivered to the cell surface, endocytosed, and then delivered to the vacuole where it is degraded, all with a t 1/2 of 15 min. Deletion analysis has defined a 36-residue-long sequence mapping near the COOH-terminal end of the Ste3p CTD that is the minimal sequence required for this rapid turnover. Deletions intruding into this interval block or severely slow the rate of endocytic turnover. Moreover, the same 36-residue sequence directs receptor ubiquitination. Mutants deleted for this sequence show undetectable levels of ubiquitination, and mutants having intermediate endocytosis defects show a correlated reduced level of ubiquitination. Not only necessary for ubiquitination and endocytosis, this sequence also is sufficient. When transplanted to a stable cell surface protein, the plasma membrane ATPase Pma1p, the 36-residue STE3 signal directs both ubiquitination of the PMA1-STE3 fusion protein as well as its endocytosis and consequent vacuolar degradation. Alanine scanning mutagenesis across the 36-residue-long interval highlights its overall complexity—no singular sequence motif or signal is found, instead required sequence elements distribute throughout the entire interval. The high proportion of acidic and hydroxylated amino acid residues in this interval suggests a similarity to PEST sequences—a broad class of sequences which have been shown to direct the ubiquitination and subsequent proteosomal degradation of short-lived nuclear and cytoplasmic proteins. A likely possibility, therefore, is that this sequence, responsible for both endocytosis and ubiquitination, may be first and foremost a ubiquitination signal. Finally, we present evidence suggesting that the true signal in the wild-type receptor extends beyond the 36-residue-long sequence defined as a minimal signal to include contiguous PEST-like sequences which extend another 21 residues to the COOH terminus of Ste3p. Together with sequences identified in two other yeast plasma membrane proteins, the STE3 sequence defines a new class of ubiquitination/endocytosis signal.  相似文献   

10.
Accumulation of misfolded proteins in cellular compartments can result in stress-induced cell death. In the endoplasmic reticulum (ER), ER-associated degradation clears aberrant proteins from the secretory pathway. In the cytoplasm and nucleus, this job is left to the cytoplasmic quality control (CytoQC) machinery. Both processes utilize chaperones and the ubiquitin-proteasome system to aid in protein elimination. Previous studies in yeast have drawn comparisons between these processes using data from structurally and topologically different substrates. We sought to draw a direct comparison between ERAD and CytoQC by studying the elimination of a single misfolded domain that, depending on its residence, is disposed by either of these pathways. The truncated, second nucleotide binding domain (NBD2*) from a yeast ERAD substrate, Ste6p*, resides at the cytoplasmic face of the ER. We show that a soluble form of NBD2* is cytoplasmic and unlike wild-type NBD2 is targeted for proteasome-mediated degradation. In contrast to Ste6p*, which employs the ER-localized Doa10p ubiquitin ligase, NBD2* is ubiquitinated by a nuclear E3 ligase San1p, a factor that is also required for its degradation. Although the yeast cytoplasmic Hsp70 chaperone, Ssa1p, has been thought to facilitate the nuclear import or to maintain the solubility of most CytoQC substrates, we discovered that Ssa1p facilitates the interaction between San1p and NBD2*, demonstrating that chaperones can aid in substrate recognition and San1p-dependent protein degradation. These results emphasize the diverse action of molecular chaperones during CytoQC.  相似文献   

11.
Ubiquitination of integral plasma membrane proteins triggers their rapid internalization into the endocytic pathway. The yeast ubiquitin ligase Rsp5p, a homologue of mammalian Nedd4 and Itch, is required for the ubiquitination and subsequent internalization of multiple plasma membrane proteins, including the alpha-factor receptor (Ste2p). Here we demonstrate that Rsp5p plays multiple roles at the internalization step of endocytosis. Temperature-sensitive rsp5 mutant cells were defective in the internalization of alpha-factor by a Ste2p-ubiquitin chimera, a receptor that does not require post-translational ubiquitination. Similarly, a modified version of Ste2p bearing a NPFXD linear peptide sequence as its only internalization signal was not internalized in rsp5 cells. Internalization of these variant receptors was dependent on the catalytic cysteine residue of Rsp5p and on ubiquitin-conjugating enzymes that bind Rsp5p. Thus, a Rsp5p-dependent ubiquitination event is required for internalization mediated by ubiquitin-dependent and -independent endocytosis signals. Constitutive Ste2p-ubiquitin internalization and fluid-phase endocytosis also required active ubiquitination machinery, including Rsp5p. These observations indicate that Rsp5p-dependent ubiquitination of a trans-acting protein component of the endocytosis machinery is required for the internalization step of endocytosis.  相似文献   

12.
Conjugation of proteins to ubiquitin plays a central role for a number of cellular processes including endocytosis, DNA repair and degradation by the 26S proteasome. However, ubiquitination is reversible as a number of deubiquitinating enzymes mediate the disassembly of ubiquitin-protein conjugates. Some deubiquitinating enzymes are associated with the 26S proteasome contributing to and regulating the particle's activity. Here, we characterise fission yeast Uch2 and Ubp6, two proteasome associated deubiquitinating enzymes. The human orthologues of these enzymes are known as Uch37 and Usp14, respectively. We report that the subunit Uch2/Uch37 is the major deubiquitinating enzyme associated with the fission yeast 26S proteasome. In contrast, the activity of Ubp6 appears to play a more regulatory and/or structural role involving the proteasome subunits Mts1/Rpn9, Mts2/Rpt2 and Mts3/Rpn12, as Ubp6 becomes essential when activity of these subunits is compromised by conditional mutations. Finally, when the genes encoding Uch2/Uch37 and Ubp6 are disrupted, the cells are viable without showing obvious signs of impaired ubiquitin-dependent proteolysis, indicating that other deubiquitinating enzymes may remedy for the redundancy of these enzymes.  相似文献   

13.
Regulated ubiquitination and degradation of signaling proteins have emerged as key mechanisms for modulating the strength and duration of signaling pathways. The reversible nature of the ubiquitination process as well as the large number and diversity of the deubiquitinating enzymes raise the possibility that signaling pathways might be modulated by specific deubiquitinating enzyme(s). Here we provide evidence that in the yeast Saccharomyces cerevisiae, the Pkc1-mediated signaling pathway that controls the cell wall integrity is negatively regulated by the deubiquitinating enzyme Ubp3. Disruption of the UBP3 gene leads to an enhanced activation of the cell wall integrity pathway MAPK Slt2 when cells are challenged with a variety of pathway activation agents such as pheromone and Congo red. The ubp3 deletion mutants accumulate high levels of Pkc1, suggesting potential regulation of Pkc1 by Ubp3. Consistent with this, Pkc1 and Ubp3 interact in vivo, and the stability of Pkc1 is markedly increased in the ubp3 deletion mutants. Moreover, disruption of the PKC1 gene, but not the genes that encode components downstream of Pkc1, completely suppresses other phenotypes displayed by the ubp3 deletion mutants such as hyperactivation of the pheromone-responsive MAPK Fus3 (Wang, Y., and Dohlman, H. G. (2002) J. Biol. Chem. 277, 15766-15772). These findings demonstrate that Ubp3 can regulate Pkc1 by facilitating its destruction and provide the initial evidence that Pkc1 plays a positive role in modulating the parallel pheromone-signaling pathway.  相似文献   

14.
Kölling R 《FEBS letters》2002,531(3):548-552
In this report, the role of phosphorylation in the regulation of ubiquitination and turnover of the ABC-transporter Ste6 was investigated. We demonstrate that Ste6 is phosphorylated in vivo and that this phosphorylation is dependent on the presence of an acidic stretch ('A-box') in the linker region previously shown to be important for ubiquitination and fast turnover of Ste6. By mutagenesis, two serine/threonine residues were identified in the A-box region that are crucial for ubiquitination and trafficking to the yeast vacuole. In the mutants there was no simple correlation between phosphorylation and ubiquitination levels, suggesting that the two events may not be coupled.  相似文献   

15.
Nakatsukasa K  Huyer G  Michaelis S  Brodsky JL 《Cell》2008,132(1):101-112
It remains unclear how misfolded membrane proteins are selected and destroyed during endoplasmic reticulum-associated degradation (ERAD). For example, chaperones are thought to solubilize aggregation-prone motifs, and some data suggest that these proteins are degraded at the ER. To better define how membrane proteins are destroyed, the ERAD of Ste6p(*), a 12 transmembrane protein, was reconstituted. We found that specific Hsp70/40s act before ubiquitination and facilitate Ste6p(*) association with an E3 ubiquitin ligase, suggesting an active role for chaperones. Furthermore, polyubiquitination was a prerequisite for retrotranslocation, which required the Cdc48 complex and ATP. Surprisingly, the substrate was soluble, and extraction was independent of a ubiquitin chain extension enzyme (Ufd2p). However, Ufd2p increased the degree of ubiquitination and facilitated degradation. These data indicate that polytopic membrane proteins can be extracted from the ER, and define the point of action of chaperones and the requirement for Ufd2p during membrane protein quality control.  相似文献   

16.
Ste4 is the β subunit of a heterotrimeric G protein that mediates mating responses in Saccharomyces cerevisiae. Here we show that Ste4 undergoes ubiquitination in response to pheromone stimulation. Ubiquitination of Ste4 is dependent on the E3 ligase Rsp5. Disrupting the activity of Rsp5 abolishes ubiquitination of Ste4 in vivo, and recombinant Rsp5 is capable of ubiquitinating Ste4 in vitro. We find also that Lys-340 is a major ubiquitination site on Ste4, as pheromone-induced ubiquitination of the protein is prevented when this residue is mutated to an arginine. Functionally, ubiquitination does not appear to regulate the stability of Ste4, as blocking ubiquitination has no apparent effect on either the abundance or the half-life of the protein. However, when presented with a concentration gradient of pheromone, Ste4(K340R) mutant cells polarize significantly faster than wild-type cells, indicating that ubiquitination limits pheromone-directed polarized growth. Together, these findings reveal a novel stimulus-dependent posttranslational modification of a Gβ subunit, establish Ste4 as a new substrate of the E3 ligase Rsp5, and demonstrate a role for G protein ubiquitination in cell polarization.  相似文献   

17.
The folding and assembly of proteins in the endoplasmic reticulum (ER) lumen and membrane are monitored by ER quality control. Misfolded or unassembled proteins are retained in the ER and, if they cannot fold or assemble correctly, ultimately undergo ER-associated degradation (ERAD) mediated by the ubiquitin-proteasome system. Whereas luminal and integral membrane ERAD substrates both require the proteasome for their degradation, the ER quality control machinery for these two classes of proteins likely differs because of their distinct topologies. Here we establish the requirements for the ERAD of Ste6p*, a multispanning membrane protein with a cytosolic mutation, and compare them with those for mutant form of carboxypeptidase Y (CPY*), a soluble luminal protein. We show that turnover of Ste6p* is dependent on the ubiquitin-protein isopeptide ligase Doa10p and is largely independent of the ubiquitin-protein isopeptide ligase Hrd1p/Der3p, whereas the opposite is true for CPY*. Furthermore, the cytosolic Hsp70 chaperone Ssa1p and the Hsp40 co-chaperones Ydj1p and Hlj1p are important in ERAD of Ste6p*, whereas the ER luminal chaperone Kar2p is dispensable, again opposite their roles in CPY* turnover. Finally, degradation of Ste6p*, unlike CPY*, does not appear to require the Sec61p translocon pore but, like CPY*, could depend on the Sec61p homologue Ssh1p. The ERAD pathways for Ste6p* and CPY* converge at a post-ubiquitination, pre-proteasome step, as both require the ATPase Cdc48p. Our results demonstrate that ERAD of Ste6p* employs distinct machinery from that of the soluble luminal substrate CPY* and that Ste6p* is a valuable model substrate to dissect the cellular machinery required for the ERAD of multispanning membrane proteins with a cytosolic mutation.  相似文献   

18.
Ubiquitinated integral membrane proteins are delivered to the interior of the lysosome/vacuole for degradation. This process relies on specific ubiquitination of potential cargo and recognition of that Ub-cargo by sorting receptors at multiple compartments. We show that the endosomal Hse1-Vps27 sorting receptor binds to ubiquitin peptidases and the ubiquitin ligase Rsp5. Hse1 is linked to Rsp5 directly via a PY element within its C-terminus and through a novel protein Hua1, which recruits a complex of Rsp5, Rup1, and Ubp2. The SH3 domain of Hse1 also binds to the deubiquitinating protein Ubp7. Functional analysis shows that when both modes of Rsp5 association with Hse1 are altered, sorting of cargo that requires efficient ubiquitination for entry into the MVB is blocked, whereas sorting of cargo containing an in-frame addition of ubiquitin is normal. Further deletion of Ubp7 restores sorting of cargo when the Rsp5:Hse1 interaction is compromised suggesting that both ubiquitin ligases and peptidases associate with the Hse1-Vps27 sorting complex to control the ubiquitination status and sorting efficiency of cargo proteins. Additionally, we find that disruption of UBP2 and RUP1 inhibits MVB sorting of some cargos suggesting that Rsp5 requires association with Ubp2 to properly ubiquitinate cargo for efficient MVB sorting.  相似文献   

19.
We present evidence that ubiquitination controls sorting of the ABC-transporter Ste6 in the early endocytic pathway. The intracellular distribution of Ste6 variants with reduced ubiquitination was examined. In contrast to wild-type Ste6, which was mainly localized to internal structures, these variants accumulated at the cell surface in a polar manner. When endocytic recycling was blocked by Ypt6 inactivation, the ubiquitination deficient variants were trapped inside the cell. This indicates that the polar distribution is maintained dynamically through endocytic recycling and localized exocytosis ("kinetic polarization"). Ste6 does not appear to recycle through late endosomes, because recycling was not blocked in class E vps (vacuolar protein sorting) mutants (Deltavps4, Deltavps27), which are affected in late endosome function and in the retromer mutant Deltavps35. Instead, recycling was partially affected in the sorting nexin mutant Deltasnx4, which serves as an indication that Ste6 recycles through early endosomes. Enhanced recycling of wild-type Ste6 was observed in class D vps mutants (Deltapep12, Deltavps8, and Deltavps21). The identification of putative recycling signals in Ste6 suggests that recycling is a signal-mediated process. Endocytic recycling and localized exocytosis could be important for Ste6 polarization during the mating process.  相似文献   

20.
The anaphase-promoting complex in partnership with its activator, Cdh1, is an E3 ubiquitin ligase responsible for targeting cell cycle proteins during G1 phase. In the budding yeast Saccharomyces cerevisiae, Cdh1 associates with the deubiquitinating enzyme Ubp15, but the significance of this interaction is unclear. To better understand the physiological role(s) of Ubp15, we examined cell cycle phenotypes of cells lacking Ubp15. We found that ubp15∆ cells exhibited delayed progression from G1 into S phase and increased sensitivity to the DNA synthesis inhibitor hydroxyurea. Both phenotypes of ubp15∆ cells were rescued by additional copies of the S-phase cyclin gene CLB5. Clb5 is an unstable protein targeted for proteasome-mediated degradation by several pathways. We found that during G1 phase, the APCCdh1-mediated degradation of Clb5 was accelerated in ubp15∆ cells. Ubp15 interacted with Clb5 independent of Cdh1 and deubiquitinated Clb5 in a reconstituted system. Thus deubiquitination by Ubp15 counteracts APC activity toward cyclin Clb5 to allow Clb5 accumulation and a timely entry into S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号