首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetraspanin functions and associated microdomains   总被引:14,自引:0,他引:14  
Cell-surface proteins of the tetraspanin family are small, and often hidden by a canopy of tall glycoprotein neighbours in the cell membrane. Consequently, tetraspanins have been understudied and underappreciated, despite their presence on nearly all cell and tissue types. Important new genetic evidence has now emerged, and is bolstered by new insights into the cell biology, signalling and biochemistry of tetraspanins. These new findings provide a framework for better understanding of these mysterious molecules in the regulation of cellular processes, from signalling to motility.  相似文献   

2.
Lymphocyte function is regulated by complex signalling responses to diverse extracellular inputs, and a cell will often receive multiple, conflicting signals at one time. The mechanisms by which a lymphocyte integrates these signals into a single cellular response are not well understood. An important factor in the integration of signals likely involves the regulation of access of signalling molecules to cell surface receptors and of receptor signals to morphological determinants within the cell. Recent studies have led to important advances in our understanding of both the mechanisms by which signals are compartmentalized in T cells and the physiological role played by such compartmentalization. We review progress in the field, with a particular focus on membrane microdomains or lipid rafts and on cell polarity.  相似文献   

3.
Müller G 《FEBS letters》2002,531(1):81-87
The critical role of the heterogeneous nature of cellular plasma membranes in transmembrane signal transduction has become increasingly appreciated during the past decade. Areas of relatively disordered, loosely packed phospholipids are disrupted by hydrophobic detergent/carbonate-insoluble glycolipid-enriched raft microdomains (DIGs) of highly ordered (glyco)sphingolipids and cholesterol. DIGs exhibit low buoyant density and are often enriched in glycosylphosphatidylinositol-anchored plasma membrane proteins (GPI proteins), dually acylated signalling proteins, such as non-receptor tyrosine kinases (NRTKs), and caveolin. At least two types of DIGs, hcDIGs and lcDIGs, can be discriminated on basis of higher and lower content, respectively, of these typical DIGs components. In quiescent differentiated cells, GPI proteins and NRTKs are mainly associated with hcDIGs, however, in adipose cells certain insulin-mimetic stimuli trigger redistribution of subsets of GPI proteins and NRTKs from hcDIGs to lcDIGs. Presumably, these stimuli induce displacement of GPI proteins from a GPI receptor located at hcDIGs whereas simultaneously NRTKs dissociate from a complex with caveolin located at hcDIGs, too. NRTKs are thereby activated and, in turn, modulate intracellular signalling pathways, such as stimulation of metabolic insulin signalling in insulin-sensitive cells. The apparent dynamics of DIGs may provide a target mechanism for regulating the activity of lipid-modified signalling proteins by small drug molecules, as exemplified by the sulfonylurea, glimepiride, which lowers blood glucose in an insulin-independent fashion, in part.  相似文献   

4.
Lipid rafts are liquid-ordered membrane microdomains with a unique protein and lipid composition found on the plasma membrane of most, if not all, mammalian cells. A large number of signalling molecules are concentrated within rafts, which have been proposed to function as signalling centres capable of facilitating efficient and specific signal transduction. This review summarizes current knowledge regarding the composition, structure, and dynamic nature of lipid rafts, as well as a number of different signalling pathways that are compartmentalized within these microdomains. Potential mechanisms through which lipid rafts carry out their specialized role in signalling are discussed in light of recent experimental evidence.  相似文献   

5.
Lipid rafts are specialized structures on the plasma membrane that have an altered lipid composition as well as links to the cytoskeleton. It has been proposed that these structures are membrane domains in which neurotransmitter signalling might occur through a clustering of receptors and components of receptor-activated signalling cascades. The localization of these proteins in lipid rafts, which is affected by the cytoskeleton, also influences the potency and efficacy of neurotransmitter receptors and transporters. The effect of lipid rafts on neurotransmitter signalling has also been implicated in neurological and psychiatric diseases.  相似文献   

6.
Taken together, our results with endogenous and transfected GPI-anchored proteins (summarized in Table 6) suggest that covalent attachment to GPI functions as an apical transport signal in polarized epithelial cells. This is the first example of a well-defined targeting signal for the post-Golgi sorting of plasma membrane proteins in polarized epithelia; the only other known post-Golgi targeting signal is mannose-6-phosphate, which functions in the recognition of lysosomal hydrolases and directs them to lysosomes.  相似文献   

7.
In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins.  相似文献   

8.
The number of neurotransmitter receptors in the postsynaptic membrane and their functional coupling to intracellular signalling cascades are important determinants of synaptic strength--and hence potential targets for plasticity related modulation. In this context, Homer/Vesl proteins have gained particular interest for three main reasons: (i) they constitute part of the molecular scaffold at postsynaptic densities of excitatory synapses in the mammalian brain; (ii) they physically link type-I metabotropic glutamate receptors to the postsynaptic density and to inositol 1,4,5-triphosphate receptors in the subsynaptic endoplasmic reticulum; and (iii) Homer-1a, which has been categorized as an immediate early gene isoform, exerts dominant-negative activity, suggesting that it is involved in activity dependent rearrangements at synaptic junctions. Although these fundamental aspects have been reviewed previously by Xiao et al., this review will address primarily more recent studies on the regulation of Homer 1a expression and on the role of Homer/Vesl proteins in spine morphogenesis and receptor targeting and signalling.  相似文献   

9.
Cornely R  Rentero C  Enrich C  Grewal T  Gaus K 《IUBMB life》2011,63(11):1009-1017
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.  相似文献   

10.
A number of proteins and signalling molecules modulate voltage-gated calcium channel activity and neurosecretion. As recent findings have indicated the presence of Ca(v)2.1 (P/Q-type) channels and soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptors (SNAREs) in the cholesterol-enriched microdomains of neuroendocrine and neuronal cells, we investigated whether molecules known to modulate neurosecretion, such as the heterotrimeric G proteins and neuronal calcium sensor-1 (NCS-1), are also localized in these microdomains. After immuno-isolation, flotation gradients from Triton X-100-treated synaptosomal membranes revealed the presence of different detergent-resistant membranes (DRMs) containing proteins of the exocytic machinery (Ca(v)2.1 channels and SNAREs) or NCS-1; both DRM subtypes contained aliquots of heterotrimeric G protein subunits and phosphatidylinositol-4,5-bisphosphate. In line with the biochemical data, confocal imaging of immunolabelled membrane sheets revealed the localization of SNARE proteins and NCS-1 in different dot-like structures. This distribution was largely impaired by treatment with methyl-beta-cyclodextrin, thus suggesting the localization of all three proteins in cholesterol-dependent domains. Finally, bradykinin (which is known to activate the NCS-1 pathway) caused a significant increase in NCS-1 in the DRMs. These findings suggest that different membrane microdomains are involved in the spatial organization of the complex molecular network that converges on calcium channels and the secretory machinery.  相似文献   

11.
Over the last twenty years, evidence has been provided that the plasma membrane is partitioned with microdomains, laterally mobile in the bilayer, providing the necessary microenvironment to specific membrane proteins for signalling pathways to be initiated. We discuss here the importance of such microdomains for Toll-like receptors (TLR) localization and function. First, lipid microdomains favour recruitment and clustering of the TLR machinery partners, i.e. receptors and co-receptors previously identified to be required for ligand recognition and signal transmission. Further, the presence of the so-called Cholesterol Recognition Amino-Acid Consensus (CRAC) sequences in the intracellular juxtamembrane domain of several Toll-like receptors suggests a direct role of cholesterol in the activation process. This article is part of a Special Issue entitled: Lipid-protein interactions.  相似文献   

12.
The endothelin B (ETB) receptor can undergo a proteolytic cleavage resulting in an unglycosylated N-terminally truncated receptor. We investigated whether ETB receptor processing affects caveolar localisation and mitogenic signalling. Distinct subcellular localisations of ETB receptor constructs and epidermal growth factor (EGF) receptor ligands were analysed performing detergent-free caveolae preparations and total internal reflection fluorescence microscopy. ETB receptor-induced transactivation of the EGF receptor and its downstream signalling was investigated performing shedding assays and ERK1/2 phosphorylation analyses. In COS7 cells, the N-terminally truncated but not the full-length or glycosylation-deficient ETB receptor localised to caveolae. In caveolae-free HEK293 cells, only ETB receptor constructs fused to caveolin-2 localised to membrane microdomains. A caveolar accumulation of the ETB receptor disfavoured EGF receptor ligand shedding. Nonetheless, the activation of ERK1/2 was efficient and long-lasting. In HEK293 cells, the shedding activity was also impaired by N-terminal truncation. The subsequent ERK1/2 phosphorylation was long-lasting only for the full-length ETB receptor. We conclude that the ETB receptor localisation might depend on the presence of caveolae within the cell investigated. The data further suggest that caveolar enrichment of ETB receptors does not facilitate the release of EGF receptor ligands. However, independent of their localisation, ETB receptors are able to induce an ERK1/2 phosphorylation.  相似文献   

13.
Adenosine receptors are a member of the large family of seven transmembrane spanning G protein coupled receptors. The four adenosine receptor subtypes-A(1), A(2a), A(2b), A(3)-exert their effects via the activation of one or more heterotrimeric G proteins resulting in the modulation of intracellular signaling. Numerous studies over the past decade have documented the complexity of G protein coupled receptor signaling at the level of protein-protein interactions as well as through signaling cross talk. With respect to adenosine receptors, the activation of one receptor subtype can have profound direct effects in one cell type but little or no effect in other cells. There is significant evidence that the compartmentation of subcellular signaling plays a physiological role in the fidelity of G protein coupled receptor signaling. This compartmentation is evident at the level of the plasma membrane in the form of membrane microdomains such as caveolae and lipid rafts. This review will summarize and critically assess our current understanding of the role of membrane microdomains in regulating adenosine receptor signaling.  相似文献   

14.
Transmembrane ephrinB proteins have important functions during embryonic patterning as ligands for Eph receptor tyrosine kinases and presumably as signal-transducing receptor-like molecules. Consistent with "reverse" signaling, ephrinB1 is localized in sphingo-lipid/cholesterol-enriched raft microdomains, platforms for the localized concentration and activation of signaling molecules. Glutamate receptor-interacting protein (GRIP) and a highly related protein, which we have termed GRIP2, are recruited into these rafts through association with the C-terminal PDZ target site of ephrinB1. Stimulation of ephrinB1 with soluble EphB2 receptor ectodomain causes the formation of large raft patches that also contain GRIP proteins. Moreover, a GRIP-associated serine/threonine kinase activity is recruited into ephrinB1-GRIP complexes. Our findings suggest that GRIP proteins provide a scaffold for the assembly of a multiprotein signaling complex downstream of ephrinB ligands.  相似文献   

15.
Reggie-1 and -2 proteins (flotillin-2 and -1 respectively) form their own type of non-caveolar membrane microdomains, which are involved in important cellular processes such as T-cell activation, phagocytosis and signalling mediated by the cellular prion protein and insulin; this is consistent with the notion that reggie microdomains promote protein assemblies and signalling. While it is generally known that membrane microdomains contain large multiprotein assemblies, the exact organization of reggie microdomains remains elusive. Using chemical cross-linking approaches, we have demonstrated that reggie complexes are composed of homo- and hetero-tetramers of reggie-1 and -2. Moreover, native reggie oligomers are indeed quite stable, since non-cross-linked tetramers are resistant to 8 M urea treatment. We also show that oligomerization requires the C-terminal but not the N-terminal halves of reggie-1 and -2. Using deletion constructs, we analysed the functional relevance of the three predicted coiled-coil stretches present in the C-terminus of reggie-1. We confirmed experimentally that reggie-1 tetramerization is dependent on the presence of coiled-coil 2 and, partially, of coiled-coil 1. Furthermore, since depletion of reggie-1 by siRNA (small interfering RNA) silencing induces proteasomal degradation of reggie-2, we conclude that the protein stability of reggie-2 depends on the presence of reggie-1. Our data indicate that the basic structural units of reggie microdomains are reggie homo- and hetero-tetramers, which are dependent on the presence of reggie-1.  相似文献   

16.
C6 rat glioma cells persistently infected with subacute sclerosing panencephalitis virus (C6/SSPE) were treated with measles antiserum and purified anti-measles IgG. This stimulated phosphoinositide breakdown and an increase in inositol phosphates. In uninfected C6 cells, however, only fetal calf serum (FCS), but not measles antiserum could induce inositol polyphosphate production.  相似文献   

17.
Plasma membrane microdomains represent subcompartments of the plasma membrane characterized by a specific lipid and protein composition. The recognition of microdomains in nearly all the eukaryotic membranes has accredited them with specialized functions in health and disease. Several proteomic studies have recently addressed the specific composition of plasma membrane microdomains, and will be reviewed in this paper. Peculiar information has been obtained, but a comprehensive view of the main protein classes required to define the microdomain proteome is still missing. The achievement of this information is slowed by the difficulties encountered in resolving and analyzing hydrophobic proteins, but it could help in understanding the overall function of plasma membrane microdomains and their involvement in human pathology.  相似文献   

18.
Protein complexes are a fundamental aspect of life in a membrane. It is therefore important to understand which proteins are assembled, and how the process of assembly is coordinated. To this end, a number of themes have emerged from the literature in recent years: first, membrane proteins assemble in an ordered, rather than a stochastic manner; second, they require chaperones to prevent unwanted interactions/aggregation; and third, they can be assembled into existing complexes. As these recurrent themes have emerged from studies on disparate complexes, they provide a general framework to understand the assembly of membrane proteins.  相似文献   

19.
Plasma membrane microdomains represent subcompartments of the plasma membrane characterized by a specific lipid and protein composition. The recognition of microdomains in nearly all the eukaryotic membranes has accredited them with specialized functions in health and disease. Several proteomic studies have recently addressed the specific composition of plasma membrane microdomains, and will be reviewed in this paper. Peculiar information has been obtained, but a comprehensive view of the main protein classes required to define the microdomain proteome is still missing. The achievement of this information is slowed by the difficulties encountered in resolving and analyzing hydrophobic proteins, but it could help in understanding the overall function of plasma membrane microdomains and their involvement in human pathology.  相似文献   

20.
Many cells cluster signaling complexes in plasma membrane microdomains. Polarized secretory cells cluster all Ca2+ signaling proteins, including GPCRs, at the apical pole. The functional significance of such an arrangement is not known because of a lack of techniques for functional mapping of signaling complexes at plasma membrane patches. In the present work, we developed such a technique based on the use of two patch pipettes, a recording and a stimulating pipette (SP). Including 20% glycerol in the SP solution increased the viscosity and the hydrophobicity to prevent leakage and formation of tight seals on the plasma membrane. This allowed moving the SP between sites to stimulate multiple patches of the same cell and with the same agonist concentrations. Functional mapping of Ca2+ signaling in pancreatic acinar cells revealed that the M3, cholecystokinin, and bombesin signaling complexes at the apical pole are much more sensitive to stimulation than those at the basal pole. Furthermore, at physiological agonist concentrations, Ca2+ signals could be evoked only by stimulation of membrane patches at the apical pole. [Ca2+](i) imaging revealed that Ca2+ waves were invariably initiated at the site of apical membrane patch stimulation, suggesting that long range diffusion of second messengers is not obligatory to initiate and propagate apical-to-basal Ca2+ waves. The present studies reveal a remarkable heterogeneity in responsiveness of Ca2+ signaling complexes at membrane microdomains, with the most responsive complexes confined to the apical pole, probably to restrict the Ca2+ signals to the site of exocytosis and allow the polarized functions of secretory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号