首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low frequency of chromosomal gene transfer from Bacillus thuringiensis to Bacillus cereus was detected by cell mating, with a tryptophan marker being the most frequently transferred gene among four that were tested. The process was resistant to DNase and was not mediated by cell filtrates. Among several B. thuringiensis subspecies tested, transfer was best with a derivative of B. thuringiensis subsp. kurstaki HD1, which lost several plasmids. All of the B. cereus recombinants contained at least one plasmid from the donor B. thuringiensis; frequently, it was a plasmid that encoded a protoxin gene. In matings with B. thuringiensis subsp. kurstaki HD1, a 29-megadalton plasmid that contained a ca. 2.5-kilobase region of homology with the chromosome was always transferred. No detectable transfer of chromosomal genes was found in B. thuringiensis subsp. kurstaki HD1 strains lacking this plasmid, suggesting that there may be chromosome mobilization.  相似文献   

2.
Transfer of chromosomal genes and plasmids in Bacillus thuringiensis   总被引:1,自引:0,他引:1  
A low frequency of chromosomal gene transfer from Bacillus thuringiensis to Bacillus cereus was detected by cell mating, with a tryptophan marker being the most frequently transferred gene among four that were tested. The process was resistant to DNase and was not mediated by cell filtrates. Among several B. thuringiensis subspecies tested, transfer was best with a derivative of B. thuringiensis subsp. kurstaki HD1, which lost several plasmids. All of the B. cereus recombinants contained at least one plasmid from the donor B. thuringiensis; frequently, it was a plasmid that encoded a protoxin gene. In matings with B. thuringiensis subsp. kurstaki HD1, a 29-megadalton plasmid that contained a ca. 2.5-kilobase region of homology with the chromosome was always transferred. No detectable transfer of chromosomal genes was found in B. thuringiensis subsp. kurstaki HD1 strains lacking this plasmid, suggesting that there may be chromosome mobilization.  相似文献   

3.
Aerial applications of Foray 48B, which contains Bacillus thuringiensis strain HD1, were carried out on 9 to 10 May, 19 to 21 May, and 8 to 9 June 1999 to control European gypsy moth (Lymantria dispar) populations in Victoria, British Columbia, Canada. A major assessment of the health impact of B. thuringiensis subsp. kurstaki was conducted by the Office of the Medical Health Officer of the Capital Health Region during this period. Environmental (air and water) and human (nasal swab) samples, collected before and after aerial applications of Foray 48B, both in the spray zone and outside of the spray zone, were analyzed for the presence of strain HD1-like bacteria. Random amplified polymorphic DNA analysis, cry gene-specific PCR, and dot blot DNA hybridization techniques were used to screen over 11,000 isolates of bacteria. We identified bacteria with genetic patterns consistent with those of B. thuringiensis subsp. kurstaki HD1 in 9,102 of 10,659 (85.4%) isolates obtained from the air samples, 13 of 440 (2.9%) isolates obtained from the water samples, and 131 of 171 (76.6%) isolates from the nasal swab samples. These analyses suggest that B. thuringiensis subsp. kurstaki HD1-like bacteria were present both in the environment and in the human population of Victoria prior to aerial applications of Foray 48B. The presence of B. thuringiensis subsp. kurstaki HD1-like bacteria in human nasal passages increased significantly after the application of Foray 48B, both inside and outside the spray zone.  相似文献   

4.
The host range and relative efficacy of three purified Bacillus thuringiensis insect control proteins were determined against 17 different agronomically important insects representing five orders and one species of mite. The three B. thuringiensis proteins were single gene products from B. thuringiensis ssp. kurstaki HD-1 (CryIA(b)) and HD-73 (CryIA(c)), both lepidopteran-specific proteins, and B. thuringiensis ssp. tenebrionis (CryIIIA), a coleopteran-specific protein. Seven insects showed sensitivity to both B. thuringiensis ssp. kurstaki proteins, whereas only 1 of the 18 insects was sensitive to B. thuringiensis ssp. tenebrionis protein. The level of B. thuringiensis ssp. kurstaki protein required for 50% mortality (LC50) varied by 2000-fold for these 7 insects. A larval growth inhibition assay was developed to determine the amount of B. thuringiensis ssp. kurstaki protein required to inhibit larval growth by 50% (EC50). This extremely sensitive assay enabled detection of B. thuringiensis ssp. kurstaki HD-73 levels as low as 1 ng/ml.  相似文献   

5.
Bacillus thuringiensis was isolated from the phylloplane of organically grown cabbage in one field during two growth seasons (1992-93). The frequency of B. thuringiensis varied between 0.02 and 0.67 of the total B. cereus/B. thuringiensis population, with an average of 0.11. Characterization of the B. thuringiensis isolates from foliage showed that the majority (64% of 150 isolates) belonged to serovar kurstaki, had bipyramidal crystals and toxicity towards Pieris brassicae and/or Trichoplusia ni. Other serovars were also found on the foliage but occurred at very low frequencies (one to three isolates of each serovar). Bacillus thuringiensis was also isolated from insects associated with the cabbage crop (Pieris rapae (Lep.), Delia radicum (Dip.), Syrphidae ribesii (Dip.) and Aleochara bilineata (Col.)), which were collected alive at different developmental stages in the same field. Serologically these isolates were assigned to the serovars kurstaki, aizawai, tochigiensis, colmeri and indiana/colmeri.  相似文献   

6.
Bacillus thuringiensis subsp. kurstaki is applied extensively in North America to control the gypsy moth, Lymantria dispar. Since B. thuringiensis subsp. kurstaki shares many physical and biological properties with Bacillus anthracis, it is a reasonable surrogate for biodefense studies. A key question in biodefense is how long a biothreat agent will persist in the environment. There is some information in the literature on the persistence of Bacillus anthracis in laboratories and historical testing areas and for Bacillus thuringiensis in agricultural settings, but there is no information on the persistence of Bacillus spp. in the type of environment that would be encountered in a city or on a military installation. Since it is not feasible to release B. anthracis in a developed area, the controlled release of B. thuringiensis subsp. kurstaki for pest control was used to gain insight into the potential persistence of Bacillus spp. in outdoor urban environments. Persistence was evaluated in two locations: Fairfax County, VA, and Seattle, WA. Environmental samples were collected from multiple matrices and evaluated for the presence of viable B. thuringiensis subsp. kurstaki at times ranging from less than 1 day to 4 years after spraying. Real-time PCR and culture were used for analysis. B. thuringiensis subsp. kurstaki was found to persist in urban environments for at least 4 years. It was most frequently detected in soils and less frequently detected in wipes, grass, foliage, and water. The collective results indicate that certain species of Bacillus may persist for years following their dispersal in urban environments.  相似文献   

7.
The expression of an insecticidal crystal protein gene of Bacillus thuringiensis under the control of the alpha-amylase gene promoter was investigated. The cryIC gene, which encodes a protein known to have a unique activity against Spodoptera (armyworm) species, was used in this investigation. The cryIC gene was placed, along with the alpha-amylase promoter from B. subtilis, in a B. thuringiensis-derived cloning vector, generating a pair of recombinant plasmids, pSB744 and pSB745. The cloning vector that contains the minimal replicon of B. thuringiensis subsp. kurstaki HD73 is stably maintained in a variety of B. thuringiensis strains, as previously reported by Gamel and Piot (Gene 120:17-26, 1992). The present study confirmed that the recombinant plasmids are also stably maintained in B. thuringiensis subsp. kurstaki Cry-B and HD73 growing in media without selection pressure for at least 48 h. The cryIC gene on the recombinant plasmids were notably expressed at high levels in both recombinant strains. Expression of the introduced cryIC gene on the recombinant plasmid in B. thuringiensis subsp. kurstaki HD73 did not impair expression of the resident cryIA(c) gene. The CryIA(c) protein is known to have a high level of activity against loopers such as Trichoplusia ni (the cabbage looper). As a result of coexpression of the introduced cryIC gene and the resident cryIA(c) gene, recombinant strain HD73 acquired an additional insecticidal activity against Spodoptera exigua (the beet armyworm) whereas the original activity level against T. ni was maintained.  相似文献   

8.
M Geiser  S Schweitzer  C Grimm 《Gene》1986,48(1):109-118
One of the genes for the entomophatogenic crystal protein of Bacillus thuringiensis (subsp. kurstaki strain HD1) has been cloned in Escherichia coli, and its nucleotide sequence determined completely. The gene is contained within a 4360-bp-long HpaI-PstI DNA restriction fragment and codes for a polypeptide of 1,155 amino acid residues. The protoxin protein has a predicted Mr of 130,625. The E. coli-derived protoxin gene product is biologically active against Heliothis virescens larvae in a biotest assay. Extensive computer comparisons with other published B. thuringiensis subsp. kurstaki strains HD1, HD73, and B. thuringiensis subsp. sotto gene sequences reveal hypervariable regions in the first half of the protoxin coding sequence. These regions are responsible for the biological activity of the protein product of the cloned gene, and may explain the different biological activities of these different protoxins.  相似文献   

9.
AIM: The study seeks to shed light on the aminopolyol, broad-spectrum antibiotic zwittermicin A gene cluster of Bacillus thuringiensis subsp. kurstaki HD1 and to identify any new uncharacterized genes with an eventual goal to establish a better understanding of the resistance gene cluster. METHODS AND RESULTS: We screened 51 serovars of B. thuringiensis by PCR and identified 12 zmaR-positive strains. The zmaR-positive B. thuringiensis subsp. kurstaki HD1 strain displayed inhibition zones against indicator fungal strain Phytophthora meadii and bacterial strain Erwinia herbicola as well as against Rhizopus sp., Xanthomonas campestris and B. thuringiensis subsp. finitimus. The zmaR gene cluster of strain HD1 was partially cloned using a lambda library and was extensively characterized based on the information available from a study performed on a similar group of genes in Bacillus cereus. CONCLUSIONS: Three of the five genes in the zwittermicin gene cluster, including the zmaR gene, had counterparts in B. cereus, and the other two were new members of the B. thuringiensis zmaR gene cluster. SIGNIFICANCE AND IMPACT OF THE STUDY: The two new genes were extensively analysed and the data is presented. Understanding antifungal activity of B. thuringiensis may help us to design suitable Cry toxin delivery agents with antifungal activity as well as enhanced insecticidal activity.  相似文献   

10.
Two sets of inverted repeat DNA sequences, IR2150 and IR1750, were discovered flanking the crystal protein gene on the 75-kilobase plasmid of Bacillus thuringiensis subsp. kurstaki HD73. A restriction map of ca. 40 kilobases around the crystal protein gene was constructed, and the positions of the copies of IR2150 and IR1750 were determined. Three copies of IR2150 were found flanking the crystal protein gene in an inverted orientation, and one partial and three intact copies of IR1750 were found in both inverted and direct orientations around the gene. Hybridization experiments with fragments from within IR2150 and IR1750 demonstrated the presence of multiple copies of these sequences on the chromosome of B. thuringiensis subsp. kurstaki HD73 and also revealed a strong correlation between the presence of these sequences and the presence of the crystal protein gene on plasmids from 14 strains of B. thuringiensis.  相似文献   

11.
Plasmid transfer between Bacillus thuringiensis subsp. kurstaki HD1 and B. thuringiensis subsp. tenebrionis donor strains and a streptomycin-resistant B. thuringiensis subsp. kurstaki recipient was studied under environmentally relevant laboratory conditions in vitro, in soil, and in insects. Plasmid transfer was detected in vitro at temperatures of 5 to 37 degrees C, at pH 5.9 to 9.0, and at water activities of 0.965 to 0.995, and the highest transfer ratios (up to 10(-1) transconjugant/donor) were detected within 4 h. In contrast, no plasmid transfer was detected in nonsterile soil, and rapid formation of spores by the introduced strains probably contributed most to the lack of plasmid transfer observed. When a B. thuringiensis subsp. kurstaki strain was used as the donor strain, plasmid transfer was detected in killed susceptible lepidopteran insect (Lacanobia oleracea) larvae but not in the nonsusceptible coleopteran insect Phaedon chocleriae. When a B. thuringiensis subsp. tenerbrionis strain was used as the donor strain, no plasmid transfer was detected in either of these insects even when they were killed. These results show that in larger susceptible lepidopteran insects there is a greater opportunity for growth of B. thuringiensis strains, and this finding, combined with decreased competition due to a low initial background bacterial population, can provide suitable conditions for efficient plasmid transfer in the environment.  相似文献   

12.
A two-step procedure was used to place a cryIC crystal protein gene from Bacillus thuringiensis subsp. aizawai into the chromosomes of two B. thuringiensis subsp. kurstaki strains containing multiple crystal protein genes. The B. thuringiensis aizawai cryIC gene, which encodes an insecticidal protein highly specific to Spodoptera exigua (beet armyworm), has not been found in any B. thuringiensis subsp. kurstaki strains. The cryIC gene was cloned into an integration vector which contained a B. thuringiensis chromosomal fragment encoding a phosphatidylinositol-specific phospholipase C, allowing the B. thuringiensis subsp. aizawai cryIC to be targeted to the homologous region of the B. thuringiensis subsp. kurstaki chromosome. First, to minimize the possibility of homologous recombination between cryIC and the resident crystal protein genes, B. thuringiensis subsp. kurstaki HD73, which contained only one crystal gene, was chosen as a recipient and transformed by electroporation. Second, a generalized transducing bacteriophage, CP-51, was used to transfer the integrated cryIC gene from HD73 to two other B. thuringiensis subsp. kurstaki stains. The integrated cryIC gene was expressed at a significant level in all three host strains, and the expression of cryIC did not appear to reduce the expression of the endogenous crystal protein genes. Because of the newly acquired ability to produce the CryIC protein, the recombinant strains showed a higher level of activity against S. exigua than did the parent strains. This two-step procedure should therefore be generally useful for the introduction of an additional crystal protein gene into B. thuringiensis strains which have multiple crystal protein genes and which show a low level of transformation efficiency.  相似文献   

13.
A plasmid-encoded crystal protein gene (bt2) has been cloned from Bacillus thuringiensis berliner 1715. In Escherichia coli, it directs the synthesis of the 130-kDa protein (Bt2) which is toxic to larvae of Pieris brassicae and Manduca sexta. Comparison of the deduced amino acid sequence of this Bt2 protein with the B. thuringiensis kurstaki HD1 Dipel, B. thuringiensis kurstaki HD73 and B. thuringiensis sotto crystal protein sequences suggests that homologous recombination between the different genes has occurred during evolution. Treatment of the Bt2 protein with trypsin or chymotrypsin yields a 60-kDa protease-resistant and fully toxic polypeptide. The minimal portion of the Bt2 protein required for toxicity has been determined by analysing the polypeptides produced by deletion derivatives of the bt2 gene. It coincides with the 60-kDa protease-resistant Bt2 fragment and it starts between amino acids 29 and 35 at the N-terminus and terminates between positions 599 and 607 at the C-terminus.  相似文献   

14.
The presence of one of the anthrax virulence plasmid pXO1 conserved fragments was analyzed in 24 Bacillus cereus and B. thuringiensis strains, including 6 B. thuringiensis subspecies, by polymerase chain reactions. Twelve out of 24 strains showed PCR-positive for an ORF101 homologous sequence. Two pXO1-ORF101-like fragments from a B. cereus B-4ac and a commercial B. thuringiensis kurstaki HD1 were cloned, sequenced and expressed in Escherichia coli. Toxicity assays revealed that the product encoded by the pXO1-ORF101-like fragment had no impact on either Vero cells or Chinese Hamster Ovary cells, suggesting that this fragment probably not contribute to enterotoxic activity. Sequence alignment of the pXO1-ORF101 from three Bacillus anthracis and ORF101-like fragments from other 12 B. cereus group isolates indicated high identity (more than 90%) and the presence of subgroup- and strain-specific SNPs among these fragments.  相似文献   

15.
In sporulating cultures of Bacillus thuringiensis subsp. yunnanensis HD977, two cell types are observed: cells forming only spores and cells forming only crystals. Curing analysis suggested that the crystal proteins are plasmid encoded. Through plasmid transfer experiments, it was established that a 103-MDa plasmid is involved in the crystal production. Conjugal transfer of this plasmid to Cry- recipient cells of Bacillus thuringiensis subsp. kurstaki HD73-26 conferred the ability to produce crystals exclusively on asporogenous cells of the recipient, indicating that the 103-MDa plasmid mediates the unique regulation of Cry protein production. When the dipteran-specific cryIVB gene was introduced into wild-type (Cry+) and Cry- backgrounds of B. thuringiensis subsp. yunnanensis by phage CP51ts45-mediated transduction, similar to all other B. thuringiensis strains, irregular crystals of CryIVB protein were produced by spore-forming cells in both backgrounds. However, the synthesis of the bipyramidal inclusions of B. thuringiensis subsp. yunnanensis was still limited only to asporogenous cells of the transductant. Thus, it appears that the unique property of exclusive crystal formation in asporogenous cells of B. thuringiensis subsp. yunnanensis is associated with the crystal protein gene(s) per se or its cis acting elements. As the crystals in B. thuringiensis subsp. yunnanensis were formed only in asporogenous cells, attempts were made to find out whether crystal formation had any inhibitory effect on sporulation. It was observed that both Cry+ and Cry- strains of B. thuringiensis subsp. yunnanensis (HD977 and HD977-1, respectively) exhibited comparable sporulation efficiencies. In addition, the Cry- B. thuringiensis subsp. kurstaki host (HD73-26) and its Cry+ transconjugant (HD73-26-16), expressing the B. thuringiensis subsp. yunnanensis crystal protein, were also comparable in their sporulation efficiencies, indicating that production of the crystal proteins of B. thuringiensis subsp. yunnanensis does not affect the process of sporulation.  相似文献   

16.
One-hundred fifty isolates of Bacillus thuringiensis were tested for their ability to produce chitinase using colloidal chitin agar as the primary plating medium. Of 14 strains that produced chitinase, B. thuringiensis ssp. kurstaki HD-1(G) was identified as the highest chitinase producer and selected for further study. This bacterium produced the highest amount of chitinase (19.3 mU/ml) when it was cultivated in nutrient broth supplemented with 0.3% colloidal chitin on a rotary shaker (200 rpm) at 30 degrees C for 2 days. The toxicities of B. thuringiensis ssp. kurstaki HD-1(G) and B. thuringiensis ssp. kurstaki wa-p-2, a chitinase nonproducer, were assayed toward Plutella xylostella (diamondback moth) larvae, resulting in LC(50)'s of 4.93 x 10(4) and 1.32 x 10(5) spores/ml, respectively. If the culture broth from B. thuringiensis ssp. kurstaki HD-1(G) was used as the suspending liquid instead of phosphate buffer, their LC(50)'s were reduced to 6.23 x 10(3) and 7.60 x 10(4) spores/ml, respectively. The histopathological changes of the midgut epithelial cells of diamondback moth larvae were compared after feeding on B. thuringiensis ssp. kurstaki HD-1(G) with and without the presence of supernatant containing chitinase under light microscopy and transmission electron microscopy. The midgut epithelial cells of larvae fed for 30 min in the presence of chitinase, with or without spores and endotoxin crystals, appeared more elongated and swollen than those of the control larvae. A number of different cellular changes such as extensive cellular disintegration and appearance of numerous vacuoles were observed from the larvae fed on B. thuringiensis ssp. kurstaki HD-1(G) supplemented with supernatant containing chitinase. Thus increased toxicity and changes in epithelial cells were correlated with the presence of chitinase but this was not distinguished from the possible presence of vegetative-stage insecticidal proteins.  相似文献   

17.
Recent characterisations of plasmids related to the anthrax virulence plasmids pXO1 and pXO2 in clinical isolates of Bacillus cereus and Bacillus thuringiensis have contributed to the emerging picture of a virulence-associated plasmid pool in the B. cereus sensu lato group. The family of pXO2-like plasmids includes the conjugative plasmid pAW63 from the biopesticide strain B. thuringiensis subsp. kurstaki HD73 and the heretofore cryptic plasmid pBT9727 from the clinical strain B. thuringiensis subsp. konkukian 97-27. Comparative sequence analysis of these three plasmids suggested that they were derived from an ancestral conjugative plasmid, with pAW63 retaining its self-transfer capabilities, and pXO2 having lost them through genetic drift. Such properties had not been investigated in pBT9727, but sequence homologies led us to predict that it may possess self-transfer capabilities. Here, we report that pBT9727 is indeed conjugative, and is able to promote its own transfer as well as that of small mobilisable plasmids.  相似文献   

18.
Most strains of the insecticidal bacterium Bacillus thuringiensis have a combination of different protoxins in their parasporal crystals. Some of the combinations clearly interact synergistically, like the toxins present in B. thuringiensis subsp. israelensis. In this paper we describe a novel joint activity of toxins from different strains of B. thuringiensis. In vitro bioassays in which we used pure, trypsin-activated Cry1Ac1 proteins from B. thuringiensis subsp. kurstaki, Cyt1A1 from B. thuringiensis subsp. israelensis, and Trichoplusia ni BTI-Tn5B1-4 cells revealed contrasting susceptibility characteristics. The 50% lethal concentrations (LC50s) were estimated to be 4,967 of Cry1Ac1 per ml of medium and 11.69 ng of Cyt1A1 per ml of medium. When mixtures of these toxins in different proportions were assayed, eight different LC50s were obtained. All of these LC50s were significantly higher than the expected LC50s of the mixtures. In addition, a series of bioassays were performed with late first-instar larvae of the cabbage looper and pure Cry1Ac1 and Cyt1A1 crystals, as well as two different combinations of the two toxins. The estimated mean LC50 of Cry1Ac1 was 2.46 ng/cm2 of diet, while Cyt1A1 crystals exhibited no toxicity, even at very high concentrations. The estimated mean LC50s of Cry1Ac1 crystals were 15.69 and 19.05 ng per cm2 of diet when these crystals were mixed with 100 and 1,000 ng of Cyt1A1 crystals per cm2 of diet, respectively. These results indicate that there is clear antagonism between the two toxins both in vitro and in vivo. Other joint-action analyses corroborated these results. Although this is the second report of antagonism between B. thuringiensis toxins, our evidence is the first evidence of antagonism between toxins from different subspecies of B. thuringiensis (B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. israelensis) detected both in vivo and in vitro. Some possible explanations for this relationship are discussed.  相似文献   

19.
A population (SERD3) of the diamondback moth (Plutella xylostella L.) with field-evolved resistance to Bacillus thuringiensis subsp. kurstaki HD-1 (Dipel) and B. thuringiensis subsp. aizawai (Florbac) was collected. Laboratory-based selection of two subpopulations of SERD3 with B. thuringiensis subsp. kurstaki (Btk-Sel) or B. thuringiensis subsp. aizawai (Bta-Sel) increased resistance to the selecting agent with little apparent cross-resistance. This result suggested the presence of independent resistance mechanisms. Reversal of resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai was observed in the unselected SERD3 subpopulation. Binding to midgut brush border membrane vesicles was examined for insecticidal crystal proteins specific to B. thuringiensis subsp. kurstaki (Cry1Ac), B. thuringiensis subsp. aizawai (Cry1Ca), or both (Cry1Aa and Cry1Ab). In the unselected SERD3 subpopulation (ca. 50- and 30-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai), specific binding of Cry1Aa, Cry1Ac, and Cry1Ca was similar to that for a susceptible population (ROTH), but binding of Cry1Ab was minimal. The Btk-Sel (ca. 600-and 60-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) and Bta-Sel (ca. 80-and 300-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) subpopulations also showed reduced binding to Cry1Ab. Binding of Cry1Ca was not affected in the Bta-Sel subpopulation. The results suggest that reduced binding of Cry1Ab can partly explain resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. However, the binding of Cry1Aa, Cry1Ac, and Cry1Ca and the lack of cross-resistance between the Btk-Sel and Bta-Sel subpopulations also suggest that additional resistance mechanisms are present.  相似文献   

20.
Chang  Roh  Je  Park  Jin  Woo  & Kang 《Letters in applied microbiology》1998,26(5):387-390
A strain of Bacillus thuringiensis, STB-1, toxic against Spodoptera exigua , was isolated. Bacillus thuringiensis STB-1 produced bipyramidal inclusions and reacted with the H antiserum of B. thuringiensis ssp. kurstaki . The plasmid and protein profiles of B. thuringiensis STB-1 were compared with those of its reference strains, ssp. kurstaki and ssp. kenyae . To verifiy the gene type of B. thuringiensis STB-1, PCR analysis was performedwith Spodoptera -specific cry gene primers. The result showed that B. thuringiensis STB-1, unlike its reference strains, had cry1Aa , cry1Ab , cry1Ac and cry1E , suggesting that B. thuringiensis STB-1 was a unique strain with respect to gene type. In addition, B. thuringiensis STB-1 showed a high level of toxicity against both S. exigua and Bombyx mori , whereas B. thuringiensis ssp. kurstaki HD-1 or ssp. kenyae showed a high level of toxicity against only Bombyx mori or S. exigua , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号