首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
'Boar taint' is a strong perspiration-like, urine-like unpleasant odour given off upon heating or cooking of meat from some intact (uncastrated) male pigs. Data from the F(2) generation of a Large White (LW) x Meishan (MS) crossbred population were analysed to detect quantitative trait loci (QTL) for traits associated with boar taint. Fat samples from 178 intact male pigs slaughtered at 85 +/- 5 kg were analysed for the major contributors to boar taint (androstenone, indole and skatole). Fat and lean samples from cooked meat were scored for boar, abnormal and pork flavour and odour by a trained sensory panel (SP). A scan with 117 markers covering the whole genome was performed in the F(2) individuals, together with their F(1) parents and purebred grandparents. At the 5% chromosomal significance threshold (approximately equal to the genome-wide suggestive significance threshold), QTL were detected for the laboratory estimate of androstenone on chromosomes 2, 4, 6, 7 and 9. However, only on chromosome 6 were there QTL for boar flavour (BF) traits in the same or adjacent marker intervals as a QTL for the laboratory estimate of androstenone. On chromosome 14, QTL were detected for the laboratory estimates of indole and skatole, the SP score for skatole and the scores for BF in lean and BF in fat. In all five cases, the MS allele generally increased the estimate or score, compared with the LW allele, but it appeared that desirable and undesirable alleles were present in both breeds. This locus on chromosome 14 has considerable potential for use to reduce the incidence of boar taint, especially if further research can identify the causative polymorphism or strongly associated markers.  相似文献   

2.
To fine map the previously detected quantitative trait loci (QTLs) affecting milk production traits on bovine chromosome 6 (BTA6), 15 microsatellite markers situated within an interval of 14.3 cM spanning from BMS690 to BM4528 were selected and 918 daughters of 8 sires were genotyped. Two mapping approaches, haplotype sharing based LD mapping and single marker regression mapping, were used to analyze the data. Both approaches revealed a quantitative trait locus (QTL) with significant effects on milk yield, fat yield and protein yield located in the segment flanked by markers BMS483 and MNB209, which spans a genetic distance of 0.6 cM and a physical distance of 1.5 Mb. In addition, the single marker regression mapping also revealed a QTL affecting fat percentage and protein percentage at marker DIK2291. Our fine mapping work will facilitate the cloning of candidate genes underlying the QTLs for milk production traits.  相似文献   

3.
Due to severe water resource shortage, genetics of and breeding for DT (drought tolerance) in rice (Oryza sativa L.) have become one of the hot research topics. Identification of grain yield QTLs (quantitative trait loci) directly related to the DT trait of rice can provide useful information for breeding new drought‐resistant and water‐saving rice varieties via marker‐assisted selection. A population of 105 advanced BILs (backcross introgression lines) derived from a cross between Zhenshan97B and IRAT109 in Zhenshan97B background were grown under drought stress in a field experiment and phenotypic traits were investigated. The results showed that in the target interval of RM273‐RM255 on chromosome 4, three main‐effect QTLs related to panicle length, panicle number, and spikelet number per panicle were identified (LOD [logarithm of the odds] > 2.0). The panicle length‐related QTL had two loci located in the neighboring intervals of RM17308‐RM17305 and RM17349‐RM17190, which explained 18.80% and 20.42%, respectively, of the phenotypic variation, while the panicle number‐related QTL was identified in the interval of RM1354‐RM17308, explaining 11.47% of the phenotypic variation. As far as the spikelet number per panicle‐related QTL was concerned, it was found to be located in the interval of RM17308‐RM17305, which explained 28.08% of the phenotypic variation. Using the online Plant‐GE query system, a total of 13 matched ESTs (expressed sequence tags) were found in the target region, and of the 13 ESTs, 12 had corresponding predicted genes. For instance, the two ESTs CB096766 and CA765747 were corresponded to the same predicted gene LOC_Os04g46370, while the other four ESTs, CA754286, CB000011, CX056247, and CX056240, were corresponded to the same predicted gene LOC_Os04g46390.  相似文献   

4.
Twenty-two and eight significant quantitative trait loci for economically important traits have been located on porcine chromosomes (SSC) 2q and SSC16 respectively, both of which have been shown to correspond to human chromosome 5 (HSA5) by chromosome painting. To provide a comprehensive comparative map for efficient selection of candidate genes, we assigned 117 genes from HSA5 using a porcine radiation hybrid (IMpRH) panel. Sixty-six genes were assigned to SSC2 and 48 to SSC16. One gene was suggested to link to SSC2 markers and another to SSC6. One gene did not link to any gene, expressed sequence tag or marker in the map, including those in the present investigation. This study demonstrated the following: (1) SSC2q21-q28 corresponds to the region ranging from 74.0 to 148.2 Mb on HSA5q13-q32 and the region from 176.0 to 179.3 Mb on HSA5q35; (2) SSC16 corresponds to the region from 1.4 to 68.7 Mb on HSA5p-q13 and to the region from 150.4 to 169.1 Mb on HSA5q32-q35 and (3) the conserved synteny between HSA5 and SSC2q21-q28 is interrupted by at least two sites and the synteny between HSA5 and SSC16 is also interrupted by at least two sites.  相似文献   

5.
通过对来自国内外的28份金针菇菌株资源的重测序共计检测到SNP位点1 241 583个,InDel位点623 670个。通过筛选分型,1 474个高质量SNP标记(多态信息含量指数PIC介于0.101-0.966之间)被用于金针菇资源群体多样性和结构分析。经计算,菌株间遗传距离在0.057-0.631之间。UPGMA进化树拓扑结构显示栽培菌株是其与野生菌株混合分支的一个亚支,自然栽培和工厂化栽培菌株可各自聚成一支,符合金针菇育种历史。群体结构结果显示金针菇种质资源包含5个亚群。主成分分析显示菌株在二主分之间的位置及互相间距离基本符合进化树分类、群体结构和遗传距离。本研究为金针菇分子标记和基因型的确定提供序列基础,也为后续资源保护利用、重要农艺性状的基因定位和基于分子标记的聚合育种提供理论依据。  相似文献   

6.
We report the chromosomal assignment of 18 porcine genes to human homologues using the INRA-Minnesota swine radiation hybrid panel (IMpRH). These genes (CACNA1C, COL2A1, CPNE8, C3F, C12ORF4, DDX11, GDF11, HOXC8, KCNA1, MDS028, TMEM106C, NR4A1, PHB2, PRICKLE1, Q6ZUQ4, SCN8A, TUBA8 and USP18) are located on porcine chromosome 5 (SSC5) and represent positional and functional candidates for arthrogryposis multiplex congenita (AMC), which maps to SSC5. CPNE8, PRICKLE1, Q6ZUQ4 and TUBA8 were mapped to the interval for pig AMC between microsatellites SW152 and SW904. Three SNPs in TUBA8 co-segregated with the AMC phenotype in 230 pigs of our research population without recombination and could be used as a genetic marker test for AMC. In addition, we provide evidence that a small chromosomal region of HSA22q11.2 evolutionarily corresponds to SSC5q12-q22 (and contains the human homologues of porcine SW152, Q6ZUQ4, TUBA8 and USP18), while the regions flanking HSA22q11.2 on SSC5 correspond to HSA12p13 and HSA12q12. We identified seven distinct chromosomal blocks, further supporting extensive rearrangements between genes on HSA12 and HSA22 in the AMC region on SSC5.  相似文献   

7.
J. Ma  W. Qi  D. Ren  Y. Duan  R. Qiao  Y. Guo  Z. Yang  L. Li  D. Milan  J. Ren  L. Huang 《Animal genetics》2009,40(4):463-467
Chinese Erhualian pigs have larger and floppier ears compared with White Duroc pigs (small, half- or fully-pricked ears). To identify quantitative trait loci (QTL) for ear weight and area as well as erectness, a genome-wide scan with 194 microsatellites was performed in a White Duroc × Chinese Erhualian resource population (>1000 F2 animals). Twenty-three genome-wide significant QTL and 12 suggestive QTL were identified. All QTL for ear erectness and size detected in two previous studies, bar two on SSC6 and 9, were confirmed here. The 1% genome-wide significant QTL at 70 cM on SSC5 and at 58 cM on SSC7 have profound and pleiotropic effects on the three ear traits, with Erhualian alleles increasing weight and area but decreasing erectness. Notably, the 95% confidence interval of the QTL for weight and area on SSC7 spanned only 3 cM. New QTL reaching 1% genome-wide significance were found on SSC8 (at 37 cM) for all three ear traits, on SSC4 and 16 for weight and area, and on SSCX for area. Unexpectedly, Erhualian alleles at these loci were associated with lighter and smaller or erect ear. Some new suggestive QTL were also found on other chromosome regions. Almost all the QTL for weight and area had essentially additive effects, while the QTL for erectness on SSC2, 5 and 7 showed not only additive effects but also partial dominance effects of Erhualian alleles. The two most significant QTL on SSC7 and SSC5 could be promising targets for fine mapping and identification of the causative mutations.  相似文献   

8.
Changes affecting the status of health and robustness can bring about physiological alterations including hematological parameters in swine. To identify quantitative trait loci (QTL) associated with eight hematological traits (one leukocyte trait, six erythrocyte traits and one platelet trait), we conducted a genome‐wide association study using the PorcineSNP60K BeadChip in a resource population derived from an intercross between Landrace and Korean native pigs. A total of 36 740 SNPs from 816 F2 progeny were analyzed for each blood‐related trait after filtering for quality control. Data were analyzed by the genome‐wide rapid association using mixed model and regression (GRAMMAR) approach. A total of 257 significant SNPs (P < 1.36 × 10?6) on SSC3, 6, 8, 13 and 17 were identified for blood‐related traits in this study. Interestingly, the genomic region between 17.9 and 130 Mb on SSC8 was found to be significantly associated with red blood cell, mean corpuscular volume and mean corpuscular hemoglobin. Our results include the identification of five significant SNPs within five candidate genes (KIT, IL15, TXK, ARAP2 and ERG) for hematopoiesis. Further validation of these identified SNPs could give valuable information for understanding the variation of hematological traits in pigs.  相似文献   

9.
Porcine-specific polymerase chain reaction (PCR) and a pig–rodent somatic cell hybrid panel were used to map two members of the MyoD gene family. MYOD1 was assigned to pig chromosome 2 and MYF5 to chromosome 5.  相似文献   

10.
Drought stress was imposed on two sets of Arabidopsis thaliana genotypes grown in sand under short‐day conditions and analysed for several shoot and root growth traits. The response to drought was assessed for quantitative trait locus (QTL) mapping in a genetically diverse set of Arabidopsis accessions using genome‐wide association (GWA) mapping, and conventional linkage analysis of a recombinant inbred line (RIL) population. Results showed significant genotype by environment interaction (G×E) for all traits in response to different watering regimes. For the RIL population, the observed G×E was reflected in 17 QTL by environment interactions (Q×E), while 17 additional QTLs were mapped not showing Q×E. GWA mapping identified 58 single nucleotide polymorphism (SNPs) associated with loci displaying Q×E and an additional 16 SNPs associated with loci not showing Q×E. Many candidate genes potentially underlying these loci were suggested. The genes for RPS3C and YLS7 were found to contain conserved amino acid differences when comparing Arabidopsis accessions with strongly contrasting drought response phenotypes, further supporting their candidacy. One of these candidate genes co‐located with a QTL mapped in the RIL population.  相似文献   

11.
HAPPY mapping is an in vitro approach for defining the order and spacing of DNA markers directly on native genomic DNA. This cloning-free technique is based on analysing the segregation of markers amplified from high molecular weight genomic DNA which has been broken randomly and 'segregated' by limiting dilution into subhaploid samples. It is a uniquely versatile tool, allowing for the construction of genome maps with flexible ranges and resolutions. Moreover, it is applicable to plant genomes, for which many of the techniques pioneered in animal genomes are inapplicable or inappropriate. We report here its demonstration in a plant genome by reconstructing the physical map of a 1.9 Mbp region around the FCA locus of Arabidopsis thaliana. The resulting map, spanning around 10% of chromosome 4, is in excellent agreement with the DNA sequence and has a mean marker spacing of 16 kbp. We argue that HAPPY maps of any required resolution can be made immediately and with relatively little effort for most plant species and, furthermore, that such maps can greatly aid the construction of regional or genome-wide physical maps.  相似文献   

12.
Intramuscular fat content (IFC) is an essential quantitative trait of meat, affecting multiple meat quality indicators. A certain amount of IFC could not only improve the sensory score of pork but also increase the flavour, tenderness, juiciness and shelf-life. To dissect the genetic determinants of IFC, two methods, including genome-wide efficient mixed-model analysis (GEMMA) and linkage disequilibrium adjusted kinships (LDAKs), were used to carry out genome-wide association studies for IFC in Suhuai pig population. A total of 14 and 18 significant single nucleotide polymorphisms (SNPs) were identified by GEMMA and LDAK, respectively. The results of these two methods were highly consistent and all 14 significant SNPs in GEMMA were detected by LDAK. Seven of the 18 SNPs reached the genome-wide significance level (P < 9.85E−07) while 11 cases reached the suggestive significance level (P < 1.77E−05). These significant SNPs were mainly distributed on Sus scrofa chromosome (SSC) 5, 3, and 7. Moreover, one locus resides in a 2.27 Mb (71.37–73.64 Mb) region on SSC5 harbouring 13 significant SNPs associated with IFC, and the lead SNP (rs81302978) also locates in this region. Linkage disequilibrium (LD) analysis showed that there were four pairs of complete LD (r2 = 1) among these 13 SNPs, and the remaining 9 SNPs with incomplete LD (r2 ≠ 1) were selected for subsequent analyses of IFC. Association analyses showed that 7 out of 9 SNPs were significantly associated with IFC (P < 0.05) in 330 Suhuai pigs, and the other 2 SNPs tended to reach a significant association level with IFC (P < 0.1). The phenotypic variance explained (PVE) range of these 9 SNPs was 0.92–3.55%. Meanwhile, the lead SNP was also significantly associated (rs81302978) with IFC (P < 0.05) in 378 commercial hybrid pigs (Pietrain × Duroc) × (Landrace × Yorkshire) (PDLY), and the PVE was 1.38%. Besides, two lipid metabolism-relevant candidate genes, the leucine rich repeat kinase 2 (LRRK2) and PDZ domain containing ring finger 4 (PDZRN4) were identified in the 2.27 Mb region on SSC5. In conclusion, our results may provide a set of markers useful for genetic improvement of IFC in pigs and will advance the genome selection process of IFC on pig breeding programmes.  相似文献   

13.
A quantitative trait locus (QTL) for ovulation rate on chromosome 3 that peaks at 36 cM has been identified in a Meishan-White composite resource population with an additive effect of 2.2 corpora lutea. As part of an effort to identify the responsible gene(s), typing of additional genes on the INRA-University of Minnesota porcine radiation hybrid (IMpRH) map of SSC3 and comparative analysis of gene order was conducted. We placed 52 known genes and expressed sequence tags, two BAC-end sequences and one microsatellite (SB42) on a framework map that fills gaps on previous RH maps. Data were analysed for two-point and multipoint linkage with the IMpRH mapping tool and were submitted to the IMpRH database (http://imprh.toulouse.inra.fr/). Gene order was confirmed for 42 loci residing in the QTL region (spanning c. 17 Mb of human sequence) by using the high-resolution IMpRH2 panel. Carthagène (http://www.inra.fr/internet/departments/MIA/T/CarthaGene) was used to estimate multipoint marker distance and order using all public markers on SSC3 in the IMpRH database and those typed in this study. For the high-resolution map, only data for markers typed in both panels were used. Comparative analysis of human and porcine maps identified conservation of gene order for SSC3q and multiple blocks of conserved segments for SSC3p, which included six distinct segments of HSA7 and two segments of HSA16. The results of this study allow significant refinement of the SSC3p region that contains an ovulation rate QTL.  相似文献   

14.
Summary Chromosome 5B of bread wheat is known to carry two major genes giving rise to genetic disorders, Ne1 for hybrid necrosis and Vg for winter variegation. Additionally, in many european winter wheat varieties this chromosome is represented in a translocated form, with 5BL-7BL, 5BL-7BS chromosomes rather than the normal 5B and 7B forms of the standard variety Chinese Spring. Genetic analysis has been carried out to map these genes and the translocation break point, and to investigate their pleiotropic effects or those of linked quantitative trait loci (qtl) for economically important characters. This was facilitated by the development of single chromosome recombinant lines between a normal and translocated karyotype, and growing these in field experiments over two seasons. There was differential segregation in favour of the translocated karyotype in the population of recombinant lines. Linkage analysis revealed that the two morphological markers and the isozyme locus Ibf-B1 were located on the long arm of 5B with a gene order of: breakpoint — Ne1VgIbf-B1. Analysis of quantitative characters using these genes as landmarks showed pleiotropic effects of Ne1 or effects of tightly linked qtl on most of the quantitative characters related to grain yield. An additional qtl determining spikelet and grain number/ear appeared to be linked to the centromere. Effects on ear emergence time were associated with both Ne1 and Vg, and these interacted with environments. Similarly, effects on plant height were associated with Ne1 and Vg. In addition, there was a further unlocated locus (loci) for height acting independently of the markers.  相似文献   

15.
The aim of this study was to map QTL for meat quality traits in three connected porcine F2 crosses comprising around 1000 individuals. The three crosses were derived from the founder breeds Chinese Meishan, European Wild Boar and Pietrain. The animals were genotyped genomewide for approximately 250 genetic markers, mostly microsatellites. They were phenotyped for seven meat quality traits (pH at 45 min and 24 h after slaughter, conductivity at 45 min and 24 h after slaughter, meat colour, drip loss and rigour). QTL mapping was conducted using a two‐step procedure. In the first step, the QTL were mapped using a multi‐QTL multi‐allele model that was tailored to analyse multiple connected F2 crosses. It considered additive, dominance and imprinting effects. The major gene RYR1:g.1843C>T affecting the meat quality on SSC6 was included as a cofactor in the model. The mapped QTL were tested for pairwise epistatic effects in the second step. All possible epistatic effects between additive, dominant and imprinting effects were considered, leading to nine orthogonal forms of epistasis. Numerous QTL were found. The most interesting chromosome was SSC6. Not all genetic variance of meat quality was explained by RYR1:g.1843C>T. A small confidence interval was obtained, which facilitated the identification of candidate genes underlying the QTL. Epistasis was significant for the pairwise QTL on SSC12 and SSC14 for pH24 and for the QTL on SSC2 and SSC5 for rigour. Some evidence for additional pairwise epistatic effects was found, although not significant. Imprinting was involved in epistasis.  相似文献   

16.
Two high-density lipoprotein cholesterol quantitative trait loci (QTL), Hdlq1 at 125 Mb and Hdlq8 at 113 Mb, were previously identified on mouse distal chromosome 5. Our objective was to identify the underlying genes. We first used bioinformatics to narrow the Hdlq1 locus to 56 genes. The most likely candidate, Scarb1 (scavenger receptor B1), was supported by gene expression data consistent with knockout and transgenic mouse models. Then we confirmed Hdlq8 as an independent QTL by detecting it in an intercross between NZB and NZW (LOD = 12.7), two mouse strains that have identical genotypes for Scarb1. Haplotyping narrowed this QTL to 9 genes; the most likely candidate was Acads (acyl-coenzymeA dehydrogenase, short chain). Sequencing showed that Acads had an amino acid polymorphism, Gly94Asp, in a conserved region; Western blotting showed that protein levels were significantly different between parental strains. A previously known spontaneous deletion causes loss of ACADS activity in BALB/cBy mice. We showed that HDL levels were significantly elevated in BALB/cBy compared with BALB/c mice and that this HDL difference cosegregated with the Acads mutation. We confirmed that Hdlq1 and Hdlq8 are independent QTL on mouse chromosome 5 and demonstrated that Scarb1 and Acads are the underlying genes.  相似文献   

17.
A maximum-likelihood QTL mapping method that simultaneously exploits linkage and linkage disequilibrium and that is applicable in outbred half-sib pedigrees is described. The method is applied to fine map a QTL with major effect on milk fat content in a 3-cM marker interval on proximal BTA14. This proximal location is confirmed by applying a haplotype-based association method referred to as recombinant ancestral haplotype analysis. The origin of the discrepancy between the QTL position derived in this work and that of a previous analysis is examined and shown to be due to the existence of distinct marker haplotypes associated with QTL alleles having large substitution effects.  相似文献   

18.
19.
In previous GWAS carried out in a Duroc commercial line (Lipgen population), we detected on pig chromosomes 3, 4 and 14 several QTL for gluteus medius muscle redness (GM a*), electric conductivity in the longissimus dorsi muscle (LD CE) and vaccenic acid content in the LD muscle (LD C18:1 n − 7), respectively. We have genotyped, in the Lipgen population, 19 SNPs mapping to 14 genes located within these QTL. Subsequently, association analyses have been performed. After correction for multiple testing, two SNPs in the TGFBRAP1 (rs321173745) and SELENOI (rs330820437) genes were associated with GM a*, whereas ACADSB (rs81449951) and GPR26 (rs343087568) genotypes displayed significant associations with LD vaccenic content. Moreover, the polymorphisms located at the ATP1A2 (rs344748241), ATP8B2 (rs81382410) and CREB3L4 (rs321278469 and rs330133789) genes showed significant associations with LD CE. We made a second round of association analyses including the SNPs mentioned above as well as other SNPs located in the chromosomes to which they map. After performing a correction for multiple testing, the only association that remained significant at the chromosome-wide level was that between the ATP1A2 genotype and LD CE. From a functional point of view, this association is meaningful because this locus encodes a subunit of the Na+/K+-ATPase responsible for maintaining an electrochemical gradient across the plasma membrane.  相似文献   

20.
The Landsberg erecta× Columbia recombinant inbred lines (RILs) of Arabidopsis have been used in order to identify and localize chromosome regions involved in the genetic control of the in vitro regeneration ability. Callus morphology (CM) and shoot regeneration (SR) traits have been considered for both leaf and root explants. The MAPMAKER analysis of leaf culture data has revealed at least one chromosome region involved with CM and several with SR, the 29–30 region of chromosome 1 being common for the two traits. Root explants did not segregate for CM but several QTLs have been detected for SR. The chromosome regions involved with leaf culture regeneration seem to be different from those of root cultures, although the regeneration of abnormal shoots in leaf explants share two chromosome regions with the regeneration of normal shoots in root cultures. Received: 19 April 2000 / Accepted: 12 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号