首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ATP has been shown to mediate stress responses in the brain. The present study examined the ATP-stimulated stress protein expression of RBA-2 type-2 astrocytes. Our results revealed that ATP stimulated HSP60 expression in a dose- and time-dependent manner. The stimulation requires a minimal ATP concentration of 500 microM and high concentration of extracellular ATP (1 mM) stimulated a significant increase of HSP60 expression from 2 to 24 h. In addition, the ATP-stimulated HSP60 expressions were inhibited by inhibitors for protein kinase C (PKC) and phospholipase D (PLD), and by antioxidants, resveratrol, and catalase. Furthermore, ATP stimulated the expression of Cu/Zn superoxide dismutase (SOD). In addition, ATP and P2X7 receptor selective agonist BzATP also decreased mitochondria membrane potential measured by flow cytometry. To further examine the proteins involving in ATP-mediated stress responses, we conducted proteomic analysis. We found that RBA-2 astrocytes possess abundant peroxiredoxin II (Prx II), an antioxidant enzyme. ATP and exogenous H2O2 stimulated Prx II shifting from oxidized form to reduced form. Thus, we concluded that ATP potentiated the expression of HSP60 and Cu/Zn SOD, and decreased mitochondria membrane potential. In addition, RBA-2 astrocytes expressed Prx II that might also serve as a protective mechanism to control the concentration of reactive oxygen species.  相似文献   

2.
This study characterizes and examines the P2 receptor-mediated signal transduction pathway of a rat brain-derived type 2 astrocyte cell line, RBA-2. ATP induced Ca2+ influx and activated phospholipase D (PLD). The ATP-stimulated Ca2+ influx was inhibited by pretreating cells with P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), in a concentration-dependent manner. The agonist 2'- and 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) stimulated the largest increases in intracellular Ca2+ concentrations ([Ca2+]i); ATP, 2-methylthioadenosine triphosphate tetrasodium, and ATPgammaS were much less effective, whereas UTP, ADP, alpha,beta-methylene-ATP, and beta,gamma-methylene-ATP were ineffective. Furthermore, removal of extracellular Mg2+ enhanced the ATP- and BzATP-stimulated increases in [Ca2+]i. BzATP stimulated PLD in a concentration- and time-dependent manner that could be abolished by removal of extracellular Ca2+ and was inhibited by suramin, PPADS, and oxidized ATP. In addition, PLD activities were activated by the Ca2+ mobilization agent, ionomycin, in an extracellular Ca2+ concentration-dependent manner. Both staurosporine and prolonged phorbol ester treatment inhibited BzATP-stimulated PLD activity. Taken together, these data indicate that activation of the P2X7 receptors induces Ca2+ influx and stimulates a Ca2+-dependent PLD in RBA-2 astrocytes. Furthermore, protein kinase C regulates this PLD.  相似文献   

3.
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.  相似文献   

4.
To examine the roles played by transforming growth factors (TGF)-β1, -β2, -β3, and TGF-β type II receptors in the induction of apoptosis in the mouse uterine epithelium after estrogen deprivation, we investigated the expression of their mRNAs and the mRNA of sulfated glycoprotein-2 (SGP-2). Pellets containing 100 μg estradiol-17β (E2) were implanted into ovariectomized mice and removed four days later. Apoptotic indices (percentage of apoptotic cells) of both luminal and glandular epithelia increased after E2 pellets were removed, but administration of progesterone (P), 5-dihydrotestosterone (DHT), or continued implantation of E2 pellets suppressed this increase. Levels of mRNAs of TGF-β1, -β2, and -β3, and SGP-2 did not increase after estrogen deprivation. However, estrogen deprivation caused a gradual increase in the level of TGF-β type II receptor mRNA, and its level increased about six-fold six days later. Moreover, E2, P, and DHT markedly decreased the level of TGF-β type II receptor mRNA. In situ hybridization demonstrated that mRNAs of TGF-β1, -β2, -β3 and TGF-β type II receptor were localized to the epithelium. Exogenous administration of TGF-β1 into the uterine stroma induced apoptosis in the epithelium, a finding that suggests that signals produced by TGF-βs can induce apoptosis. Therefore, the present results suggest that increased sensitivity of uterine epithelial cells to TGF-βs, as demonstrated by an increase in TGF-β type II receptor mRNA, is involved in the induction of apoptosis after estrogen deprivation, although signals produced by TGF-βs do not appear sufficient to induce apoptosis.  相似文献   

5.
Glutamate clearance by astrocytes is critical for controlling excitatory neurotransmission and ATP is an important mediator for neuron-astrocyte interaction. However, the effect of ATP on glutamate clearance has never been examined. Here we report that treatment of RBA-2 cells, a type-2-like astrocyte cell line, with ATP and the P2X(7) receptor selective agonist 3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) decreased the Na+-dependent [3H]glutamate uptake within minutes. Mechanistic studies revealed that the decreases were augmented by removal of extracellular Mg2+ or Ca2+, and was restored by P2X7 selective antagonist , periodate-oxidized 2',3'-dialdehyde ATP (oATP), indicating that the decreases were mediated through P2X(7) receptors. Furthermore, stimulation of P2X7 receptors for 2 h inhibited both activity and protein expression of glutamine synthetase (GS), and oATP abolished the inhibition. In addition, removal of extracellular Ca(2+) and inhibition of protein kinase C (PKC) restored the ATP-decreased GS expression but failed to restore the P2X(7)-decreased [3H]glutamate uptake. Therefore, P2X7-mediated intracellular signals play a role in the down-regulation of GS activity/expression. Activation of P2X7 receptors stimulated increases in intracellular Na+ concentration ([Na+](i)) suggesting that the P2X(7)-induced increases in [Na+](i) may affect the local Na+ gradient and decrease the Na+-dependent [3H]glutamate uptake. These findings demonstrate that the P2X7-mediated decreases in glutamate uptake and glutamine synthesis were mediated through distinct mechanisms in these cells.  相似文献   

6.
The correlation between the lethal effect of 7β-hydroxycholesterol (7β-OH-CH) on spontaneously transformed cell lines derived from rat astrocyte primary cultures (normal cells) and de novo cholesterogenesis was investigated. Both 7β-OH-CH and 7-keto-CH were not cytotoxic on normal cells but 7β-OH-CH affected markedly the viability of the transformed cells. The use of [14C]acetate or [14C] mevalonate indicated that 7-keto-CH inhibits de novo cholesterogenesis upstream of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) in both cell types whereas 7β-OH-CH also inhibits downstream of HMGR. The accumulation of two radiolabelled products X1 and X2 between mevalonate and CH was found in unsaponifiable neutral lipids extracted from 7β-OH-CH treated transformed cells. HPLC and GC-MS revealed that X1 and X2 are not lanosterol anti 24.25-epoxylanosterol, respectively. Incubation of the transformed cells with X1 and X2 did not affect their viability. Our data demonstrate that, under our experimental conditions, 7β-OH-CH cytotoxicity is not linked to the inhibition of de novo cholesterogenesis in cultured glial transformed cells.  相似文献   

7.
Previous studies have shown that growth suppression and apoptosis of leukemic cells exposed to TGF-β1 is associated with the inhibition of ornithine decarboxylase (ODC) — the key enzyme of polyamine pathway. The aim of the present study was to evaluate the influence of 12-O-tetradecanoylphorbol 13-acetate (TPA) — a potent ODC inducer on antiproliferative and apoptotic effects of TGF-β1 in L1210 leukemic cells. Cells were incubated in 2%FCS/RPMI1640 medium, supplemented with TGF-β1 (2 ng/ml), TPA (100 ng/ml) or -difluoromethyl-ornithine (DFMO) (5 mM). Cell proliferation, apoptosis and necrosis were evaluated using [methyl-3H] thymidine, electron microscopy, electrophoresis of DNA and trypan blue exclusion. Expression and activity of ODC were determinated by RT-PCR and measurement of 14CO2 release from L-1-14C ornithine, respectively. TGF-β1 inhibited proliferation and induced apoptotic and necrotic cell death in L1210 leukemic cells. The above effects were associated with the inhibition of ODC expression and activity, measured 2 and 4 hr after TGF-β1 administration, respectively. The presence of DFMO, an irreversible inhibitor of ODC, led to apoptotic fragmentation of DNA, similar to that observed in TGF-β1-treated cultures. Administration of TPA simultaneously with TGF-β1 significantly reduced antiproliferative, apoptotic and necrotic effects of TGF-β1, and prevented its inhibitory action on ODC expression and activity. It is concluded that: down-regulation of ODC expression may be one of the early events associated with TGF-β1-evoked suppression of growth and apoptosis; ODC is involved in the mechanism of protective action of TPA on TGF-β1-related growth inhibition of L1210 leukemic cells.  相似文献   

8.
9.
Effects of cannabinoid on expression of β-type transforming growth factors (TGF-β1, -β2 and -β3), insulin-like growth factor-I (IGF-I) and c-myc genes in the uteri of adult ovariectomized mice were examined using Northern blot hybridization. Mice were exposed to 9-ene-tetrahydrocannabinol (THC) alone or in combination with an injection of estradiol-17β (E2) and/or progesterone (P4), and uteri were analyzed at various times thereafter. TGF-β isoform messenger RNAs (mRNAs) persisted in ovariectomized uteri and their levels were not altered after THC treatment, whereas an injection of E2 caused a modest increase in TGF-β1 and -β3 mRNA levels at 24 h. Imposition of THC treatment advanced the stimulatory effects of E2 by changing the timing for the peak of TGF-β3 mRNA levels to 12 h. In comparison, E2 treatment substantially elevated the levels of TGF-β2 mRNA at 6 h, and THC potentiated this E2 response without affecting the timing for the response. Imposition of P4 treatment did not antagonize any of these responses. P4 treatment alone or with THC had insignificant effects on mRNA levels for these TGF-β isoforms. Uterine levels of IGF-I and c-myc mRNAs were low in ovariectomized mice and THC did not alter these mRNA levels. In contrast, E2 treatment induced a rapid, but transient, increase in IGF-I and c-myc mRNAs, and THC antagonized the rapid c-myc mRNA response and altered the timing of the IGF-I mRNA response. P4 treatment alone also caused the transient induction of these mRNAs, but THC failed to antagonize these effects. An injection of P4 plus E2 resulted in further modest increases in IGF-I and c-myc mRNA levels as compared to E2 or P4 treatment alone. However, THC did not antagonize these transient stimulatory effects of the combined ovarian steroids. The data suggest that THC should not be classified as estrogenic or antiestrogenic. However, this compound can modulate (potentiate, antagonize and/or alter timing) the effects of ovarian steroids on uterine gene expression.  相似文献   

10.
Extracellular ATP acts as a signal that regulates a variety of cellular processes via binding to P2 purinergic receptors (P2 receptors). We herein investigated the effects and signaling pathways of ATP on glucose uptake in C(2)C(12) skeletal muscle cells. ATP as well as P2 receptor agonists (ATP-gamma S) stimulated the rate of glucose uptake, while P2 receptor antagonists (suramin) inhibited the stimulatory effect of ATP, indicating that P2 receptors are involved. This ATP-stimulated glucose transport was blocked by specific inhibitors of Gi protein (pertusiss toxin), phospholipase C (U73122), protein kinase C (GF109203X), and phosphatidylinositol (PI) 3-kinase (LY294002). ATP stimulated PI 3-kinase activity and P2 receptor antagonists blocked this activation. In C(2)C(12) myotubes expressing glucose transporter GLUT4, ATP increased basal and insulin-stimulated glucose transport. Finally, ATP facilitated translocation of GLUT1 and GLUT4 into plasma membrane. These results together suggest that cells respond to extracellular ATP to increase glucose transport through P2 receptors.  相似文献   

11.
Previous work has established the presence of functional P2X7 subunits in rat cerebellar astrocytes, which after stimulation with 3'- O -(4-benzoyl)benzoyl ATP (BzATP) evoked morphological changes that were not reproduced by any other nucleotide. To further characterize the receptor(s) and signaling mechanisms involved in the action of BzATP, we have employed fura-2 microfluorometry and the patch-clamp technique. BzATP elicited intracellular calcium responses that typically exhibited two components: the first one was transient and metabotropic in nature – sensitive to phospholipase C inhibition and pertussis toxin treatment –, whereas the second one was sustained and depended on the presence of extracellular calcium. The ionotropic nature of this latter component was corroborated by measurements of Mn2+ entry and macroscopic non-selective cation currents evoked by either BzATP (100 μM) or ATP (1 mM). The two components of the calcium response to BzATP differed in their pharmacological sensitivity. The metabotropic component was partially sensitive to pyridoxalphosphate-5'-phosphate-6-azo-(-2-chloro-5-nitrophenyl)-2,4-disulfonate, a selective antagonist of P2Y13 receptors, while the ionotropic component was modulated by external magnesium and markedly reduced by brilliant blue G and 3-(5-(2,3-dichlorophenyl)-1 H -tetrazol-1-yl)methyl pyridine (A438079), thus implying the involvement of P2X7 purinergic receptors. It is concluded that P2Y13 and P2X7 purinergic receptors are functionally expressed in rat cerebellar astrocytes and mediate the increase in intracellular calcium elicited by BzATP in these cells.  相似文献   

12.
The aim of this study was to characterize the regulatory mechanisms of the P2X(7) receptor (P2X(7)R)-mediated phospholipase D (PLD) activation in a rat brain-derived Type-2 astrocyte cell line, RBA-2. A time course study revealed that activation of P2X(7)R resulted in a choline and not phosphorylcholine formation, suggesting that activation of P2X(7)R is associated with the phosphatidylcholine-PLD (PC-PLD) in these cells. GF 109203X, a selective protein kinase C (PKC) inhibitor, partially inhibited the P2X(7)R-mediated PLD activation, while blocking the phorbol 12-myristate 13-acetate (PMA)-stimulated PLD activity. In addition, PMA synergistically activated the P2X(7)R-mediated PLD activity. Furthermore, genistein, a tyrosine kinase inhibitor, blocked the P2X(7)R-activated PLD, while KN62, a Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor, was less effective, whereas the mitogen-activated protein kinase (MAPK) inhibitor PD98059 was ineffective. No additive inhibitory effects were found by simultaneous treatment of GF 109203X and KN62 on P2X(7)R-activated PLD. Taken together, these results demonstrate that both PKC-dependent and PKC-independent signaling pathways are involved in the regulation of P2X(7)R-mediated PLD activation. Additionally, CaMKII may participate in the PKC-dependent pathway, and tyrosine kinase may play a pivotal role on both PKC-dependent and PKC-independent pathways in the P2X(7)R-mediated PLD activation in RBA-2 cells.  相似文献   

13.
Jakowlew SB  Zakowicz H  Moody TW 《Peptides》2000,21(12):1831-1837
The effects of retinoic acid (RA) on lung cancer cells were investigated. Both all-trans (t-RA) and 13-cis RA (c-RA) decreased specific 125I-VIP binding to NCI-H1299 cells in a time- and concentration-dependent manner. After 20 hr, 30 μM t-RA decreased specific 125I-VIP binding by 60%. By Scatchard analysis, the density of VIP binding sites but not the affinity was reduced by 42%. NCI-H1299 VPAC1 receptor mRNA was reduced by 48%. VIP caused a 3-fold elevation in the NCI-H1299 cAMP, and the increase in cAMP caused by VIP was reduced by 38% if the NCI-H1299 cells were treated with t-RA. Using the MTT assay, 3 μM t-RA and 3 μM c-RA inhibited NCI-H1299 proliferation by 60 and 23% respectively. Also, transforming growth factor (TGF)-β2 increased after treatment of NCI-H1299 cells with t-RA whereas TGF-β1 mRNA was unaffected and TGF-β3 mRNA was decreased. These results suggest that RA may inhibit lung cancer growth by down-regulating VPAC1 receptor and TGF-β3 mRNA but up-regulating TGF-β2 mRNA.  相似文献   

14.
Abstract: The c- erbA protooncogene encodes the thyroid hormone (3,5,3'-triiodothyronine; T3) receptor α1 (TRα1). c- erbA /TRα1 is expressed in many cell types including glial cells, particularly in the immature state. We show here by morphological and biochemical criteria that c- erbA induces apoptosis of glial B3.1 cells in serum-deprived conditions. This effect is mostly T3 independent. Growth factors such as platelet-derived growth factor, basic fibroblast growth factor, or transforming growth factor-α prevent B3.1 + TRα1 cell death. Protein kinase C(PKC) activators also prevent the apoptosis phenomenon, an effect that was blocked by the PKC-specific inhibitor GF109203X. Expression of an exogenous bcl-2 gene led also to B3.1 + TRα1 cell survival. Neither a series of inhibitors including GF109203X nor T3 inhibits bcl-2 action, indicating that bcl-2 blocks a downstream step in the death-promoting process. B3.1 + TRα1 cell apoptosis is not blocked by caspase-1 or poly-ADP-ribosyltransferase inhibitors, suggesting that the activation of these classic pathways is not involved in the apoptotic mechanism. In addition, direct interaction with specific neuronal cells but not incubation with their conditioned medium inhibits also apoptosis of B3.1 + TRα1 cells. Our results show that c- erbA promotes an apoptotic process in glial B3.1 cells that is suppressible by PKC activation and bcl-2 , probably by distinct mechanisms.  相似文献   

15.
Phospholipase D (PLD) is a ubiquitous enzyme that can be activated by extracellular adenosine 5'-triphosphate (ATP) or phorbol 12-myristate 13-acetate (PMA) in B-lymphocytes from subjects with chronic lymphocytic leukaemia (CLL). In this study, ATP- but not PMA-induced PLD stimulation in CLL B-lymphocytes was abolished in the presence of an anti-P2X(7) receptor monoclonal antibody, as well as in B-lymphocytes from CLL subjects homozygous for the Glu(496) to Ala loss-of-function P2X(7) polymorphism. Rottlerin, an inhibitor of novel protein kinase C (PKC) isoforms, but not GF 109203X, an inhibitor of conventional PKC isoforms, impaired the ATP-stimulated PLD activity in CLL B-lymphocytes. In contrast, both inhibitors impaired PLD activity stimulated by PMA, a known mediator of PKC activation. The inhibition of P2X(7)-stimulated PLD activity by rottlerin was attributed to a target downstream of P2X(7) activation, as the ATP-mediated (86)Rb(+) efflux from CLL B-lymphocytes was not altered in the presence of rottlerin. Our results indicate a possible role for novel PKC isoforms in the regulation of P2X(7)-mediated PLD activity.  相似文献   

16.
目的:观察硫化氢(H2S)供体硫氢化钠(NaHS)对ATP致伤的大鼠小胶质细胞细胞活力、细胞膜通透性及P2X7受体表达的影响。方法:实验取对数期形态结构及生长分化良好的大鼠小胶质细胞,随机分4组,每组设3个复孔。①正常对照组:常规培养,不进行ATP处理。②ATP组:接种细胞24 h后ATP处理。③NaHS+ATP组:NaHS预先孵育30 min后再用ATP处理,并且NaHS始终存在于反应体系中。④KN-62(P2X7受体阻断剂)+ATP组:KN-62预先孵育30 min,其余同NaHS+ATP组。MTT检测各组细胞活力,荧光染料YO-PRO-1检测各组相对荧光单位(RFU)反映膜的通透性,Western blot检测各组P2X7受体表达水平。结果:①与对照组相比,不同浓度的ATP (1、3、5、10 mmol/L)作用3 h均可明显降低大鼠小胶质细胞活力,NaHS (200 μmol/L)干预后大鼠小胶质细胞活力较ATP组明显增加(P<0.01),但NaHS达400 μmol/L浓度时,其保护作用未进一步增加。②随着ATP浓度的增加,大鼠小胶质细胞内YO-PRO-1的荧光强度显著增加,NaHS预处理可明显减少细胞对YO-PRO-1的摄取(P<0.01)。③ATP (3 mmol/L)能上调P2X7受体蛋白表达水平,而NaHS (200 μmol/L)预孵育则可明显抑制ATP引起的P2X7受体蛋白表达的上调(P<0.01)。结论:NaHS可减少ATP致伤的大鼠小胶质细胞的P2X7受体表达、降低通透性、增加细胞活力,提示调控P2X7受体的表达和功能可能是H2S神经保护作用的重要环节。  相似文献   

17.
18.
ATP-induced Secretion in PC12 Cells and Photoaffinity Labeling of Receptors   总被引:2,自引:1,他引:1  
Abstract— Secretion of catecholamines by rat PC12 cells is strongly stimulated by extracellular ATP via a P2-type pur-inergic receptor. ATP-induced norepinephrine release was inhibited 80% when extracellular Ca2+ was absent. Only four nucleotides, ATP, ATPγS, benzoylbenzoyl ATP (BzATP), and 2-methylthio-ATP, gave substantial stimulation of norepinephrine release from PC12 cells. ATP-induced secretion was inhibited by Mg2+, and this inhibition was overcome by the addition of excess ATP suggesting that ATP4-was the active ligand. ATP-induced secretion of catecholamine release was enhanced by treatment of cells with pertussis toxin or 12- O -tetradecanoylphorbol 13-acetate. The stimulatory effects of 12- O -tetradecanoyl-phorbol 13-acetate and pertussis toxin on norepinephrine release were additive. After brief exposure of intact cells to the photoaffinity analog, [α-32P]BzATP, two major proteins of 44 and 50 kDa and a minor protein of 97 kDa were labeled. An excess of ATP-γS and BzATP but not GTP blocked labeling of the proteins by [32P]BzATP. Labeling of the 50-kDa protein was more sensitive to competition by 2-methylthio-ATP than the other labeled proteins, suggesting that the 50-kDa protein represents the P2 receptor responsible for ATP-stimulated secretion in these cells.  相似文献   

19.
Prostaglandins (PGs) are generated by the enzymatic activity of cyclooxygenase-1 and -2 (COX-1/2) and modulate several functions in the CNS such as the generation of fever, the sleep/wake cycle, and the perception of pain. Moreover, the induction of COX-2 and the generation of PGs has been linked to neuroinflammatory aspects of Alzheimer's disease (AD). Non-steroidal anti-inflammatory drugs (NSAIDs) that block COX enzymatic activity have been shown to reduce the incidence of AD in various epidemiological studies. While several reports investigated the expression of COX-2 in neurons and microglia, expression of COX-2 in astroglial cells has not been investigated in detail. Here we show that amyloid β peptide 25–35 (Aβ25–35) induces COX-2 mRNA and protein synthesis and a subsequent release of prostaglandin E2 (PGE2) in primary midbrain astrocytes. We further demonstrate that protein kinase C (PKC) is involved in Aβ25–35-induced COX-2/PGE2 synthesis. PKC-inhibitors prevent Aβ25–35-induced COX-2 and PGE2 synthesis. Furthermore Aβ25–35 rapidly induces the phosphorylation and enzymatic activation of PKC in primary rat midbrain glial cells and in primary human astrocytes from post mortem tissue. Our data suggest that the PKC isoforms and/or β are most probably involved in Aβ25–35-induced expression of COX-2 in midbrain astrocytes. The potential role of astroglial cells in the phagocytosis of amyloid and the involvement of PGs in this process suggests that a modulation of PGs synthesis may be a putative target in the prevention of amyloid deposition.  相似文献   

20.
We have examined the effect of transforming growth factor β1 (TGF-β1) and overexpression of the Smad4 gene on the phenotype of Car C, a ras mutated highly malignant spindle carcinoma cell line. TGF-β1-treated Car C cells overexpressing Smad4 spread with a flattened morphology with membrane ruffles abundant in vinculin and show a reduction in their invasive abilities. TGF-β1 treatment and overexpression of Smad4 also enhanced the production of PAI-1 measured by the activation of the p3TP-lux reporter gene containing a PAI-1-related promoter. This activation was abolished with a dominant-negative Smad4 construct. These results lead us to conclude that both TGF-β1 and Smad4 overexpression reduce the invasive potential of Car C cells, probably via the Smad pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号