首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J F Wang  A P Hinck  S N Loh  J L Markley 《Biochemistry》1990,29(17):4242-4253
A combination of multinuclear two-dimensional NMR experiments served to identify and assign the combined 1H, 13C, and 15N spin systems of the single tryptophan, three phenylalanines, three histidines, and seven tyrosines of staphylococcal nuclease H124L in its ternary complex with calcium and thymidine 3',5'-bisphosphate at pH 5.1 (H2O) or pH 5.5 (2H2O). Samples of recombinant nuclease were labeled with 13C or 15N as appropriate to individual NMR experiments: uniformly with 15N (all sites to greater than 95%), uniformly with 13C (all sites to 26%), selectively with 13C (single amino acids uniformly labeled to 26%), or selectively with 15N (single amino acids uniformly labeled to greater than 95%). NMR data used in the analysis included single-bond and multiple-bond 1H-13C and multiple-bond 1H-15N correlations, 1H-13C single-bond correlation with Hartmann-Hahn relay (1H[13C]SBC-HH), and 1H-13C single-bond correlation with NOE relay (1H[13C]SBC-NOE). The aromatic protons of the spin systems were identified from 1H[13C]SBC-HH data, and the nonprotonated aromatic ring carbons were identified from 1H-13C multiple-bond correlations. Sequence-specific assignments were made on the basis of observed NOE relay connectivities between assigned 1H alpha-13C alpha or 1H beta-13C beta direct cross peaks in the aliphatic region [Wang, J., LeMaster, D. M., & Markley, J. L. (1990) Biochemistry 29, 88-101] and 1H delta-13C delta direct cross peaks in the aromatic region of the 1H[13C]SBC-NOE spectrum. The His121 1H delta 2 resonance, which has an unusual upfield shift (at 4.3 ppm in the aliphatic region), was assigned from 1H[13C]SBC, 1H[13C]MBC, and 1H[15N]MBC data. Evidence for local structural heterogeneity in the ternary complex was provided by doubled peaks assigned to His46, one tyrosine, and one phenylalanine. Measurement of NOE buildup rates between protons on different aromatic residues of the major ternary complex species yielded a number of interproton distances that could be compared with those from X-ray structures of the wild-type nuclease ternary complex with calcium and thymidine 3',5'-bisphosphate [Cotton, F. A., Hazen, E. E., Jr., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555; Loll, P. J., & Lattman, E. E. (1989) Proteins: Struct., Funct., Genet. 5, 183-201]. The unusual chemical shift of His121 1H delta 2 is consistent with ring current calculations from either X-ray structure.  相似文献   

2.
Eight anionic disaccharide precursors of lipid A accumulate at 42 degrees C in 3-deoxy-D-manno-octulosonic acid-deficient temperature-sensitive mutants of Salmonella typhimurium. These compounds comprise a series of lipids based on the minimal structure, O-[2-amino-2-deoxy-N2,O3-bis(3-hydroxytetradecanoyl)-beta-D-glucopyranos yl] -(1----6)-2-amino-2-deoxy-N2, O3-bis(3-hydroxytetradecanoyl)-alpha-D-glucopyranose 1,4'- bisphosphate (designated lipid IVA) that differ from each other by the presence of an additional phosphoethanolamine moiety (IIIA), or an aminodeoxypentose moiety (IIA), or both (IA). A homologous set of metabolites is further derivatized with a palmitoyl function; these are designated IVB, IIIB, IIB, and IB (Raetz, C. R. H., Purcell, S., Meyer, M. V., Qureshi, N., and Takayama, K. (1985) J. Biol. Chem. 260, 16080-16088). The attachment of the palmitoyl moiety, known to be on the reducing terminal GlcN residue by mass spectrometry, was determined to be O-beta of the N2-linked beta-hydroxymyristoyl group of that residue of IVB by 13C NMR and two-dimensional 1H chemical shift correlation spectroscopy experiments. 31P NMR indicated the presence of diphosphodiester moieties in IIIA, IIIB, and IA and monophosphodiester moieties in IIA and IA. Selective 1H decoupling of the 31P spectrum of IIIA demonstrated that the O-diphosphoethanolamine moiety is attached to the O4' position in IIIA. On the basis of the observed 31P chemical shifts it was concluded that the aminodeoxypentose is located at position 1 in IIA and IA, while diphosphoethanolamine is most likely located at O-4' in IA and IIIB, as in IIIA.  相似文献   

3.
We recorded several types of heteronuclear three-dimensional (3D) NMR spectra on 15N-enriched and 13C/15N-enriched histidine-containing phosphocarrier protein, HPr, to extend the backbone assignments [van Nuland, N. A. J., van Dijk, A. A., Dijkstra, K., van Hoesel, F. H. J., Scheek, R. M. & Robillard, G. T. (1992) Eur. J. Biochem, 203, 483-491] to the side-chain 1H,15N and 13C resonances. From both 3D heteronuclear 1H-NOE 1H-13C and 1H-NOE 1H-15N multiple-quantum coherence (3D-NOESY-HMQC) and two-dimensional (2D) homonuclear NOE spectra, more than 1200 NOE were identified and used in a step-wise structure refinement process using distance geometry and restrained molecular dynamics involving a number of new features. A cluster of nine structures, each satisfying the set of NOE restraints, resulted from this procedure. The average root-mean-square positional difference for the C alpha atoms is less than 0.12 nm. The secondary structure topology of the molecule is that of an open-face beta sandwich formed by four antiparallel beta strands packed against three alpha helices, resembling the recently published structure of Bacillus subtilis HPr, determined by X-ray crystallography [Herzberg, O., Reddy, P., Sutrina, S., Saier, M. H., Reizer, J. & Kapafia, G. (1992) Proc. Natl, Acad. Sci. USA 89, 2499-2503).  相似文献   

4.
Rodríguez JC  Wilks A  Rivera M 《Biochemistry》2006,45(14):4578-4592
The 198 amino acid long heme oxygenase from Pseudomonas aeruginosa (pa-HO) was studied by multinuclear and multidimensional NMR spectroscopy in its paramagnetic cyanide-inhibited (pa-HO-CN) and azide-inhibited (pa-HO-N3) forms. Nearly complete backbone assignments (>93%) of all non-proline residues have been obtained, with the majority of the nonassigned residues corresponding to the first 10 amino terminal residues. Resonances strongly affected by heme iron paramagnetism were assigned with the aid of selective amino acid labeling and experiments tailored to detect fast relaxing signals, whereas the rest of the polypeptide was assigned using conventional three-dimensional NMR experiments. Amide chemical shift assignments were used to monitor the rate of exchange of backbone protons in hydrogen-deuterium exchange experiments. The polypeptide in the pa-HO-N3 complex was found to be significantly less prone to exchange than the polypeptide in pa-HO-CN, which we interpret to indicate that pa-HO-N3 is conformationally less flexible than pa-HO-CN. The differences in protection factors extend to regions of the protein remote from the heme iron and distal ligand. Mapping the differences in protection factors into the X-ray crystal structure of pa-HO [Friedman, J., Lad, L., Li, H., Wilks, A. Poulos, T. L. (2004) Biochemistry 43, 5239-5345] suggests that the distinct chemical properties imparted by the coordination of azide or cyanide to the heme iron [Zeng, Y. Caignan, G. A., Bunce, R. A., Rodríguez, J. C., Wilks, A., Rivera, M. (2005) J. Am. Chem. Soc. 127, 9794-9807] are transmitted to the polypeptide by a network of structural water molecules extending from the active site to the surface of the enzyme. Finally, while the 1H amide resonance of Gly125 was too broad to detect, the corresponding 15N resonance exhibits a large downfield shift, large line width, steep temperature dependence, and a larger than usual upfield deuterium isotope effect. These properties indicate unpaired spin delocalization from the heme iron into the Gly 15N atom via formation of a hydrogen bond between the coordinated azide nitrogen and the Gly125 N-H.  相似文献   

5.
6.
7.
PP-50, a peptide based on residues 141-190 of the beta-subunit of mitochondrial F1-ATPase, contains the GX4GKT consensus region for nucleoside triphosphate binding and has been shown to bind ATP [Garboczi, D.N., Shenbagamurthi, W.K., Hullihen, J., & Pedersen, P.L. (1988) J. Biol. Chem. 263, 812-816]. At pH 4.0, appropriate for NMR studies, PP-50 retains the ability to bind ATP tightly (KD = 17.5 microM) with a 1:1 stoichiometry as shown by titrations measuring the partial quenching of ATP fluorescence by PP-50. CD spectra of PP-50 at pH 4.0 and at low ionic strength show 5.8% helix, 30.2% beta-structure, and 64% coil. ATP binding increases the structure of PP-50, changing the CD to 7.5% helix, 44.5% beta-structure, and 48% coil. Increasing the ionic strength to 50 mM KCl also increases the structure, changing the CD to 7.4% helix, 64.4% beta-structure, and 28.2% coil. The 600-MHz proton NMR spectrum of PP-50, at pH 4.0 and low ionic strength, has been assigned by 2D methods (TOCSY, DQF-COSY, and NOESY with jump-return water suppression). Based on strong d alpha N NOEs, J alpha N values, and NH chemical shifts differing from random coil values, regions of extended structure are detected from residues 1-7 and 43-48. Based on dNN, dNN(i,i+2), and d alpha N(i,i+2) NOEs and 3J alpha N values, possible type I' and type I turns are found from residues 11-14 and 31-34, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
15N relaxation measurements have been performed on the type Iota blue copper protein azurin from Pseudomonas aeruginosa. The relaxation times show that one loop (residues 103-108) and one turn (residues 74-77) display fast internal motions. The rest of the protein is rigid with an average order parameter S(2) of 0.85 +/- 0. 05. The copper binding site shows the same degree of rigidity even though is it composed of several loops and lies outside the beta-sheet sandwich. Substantial exchange broadening was found for a number of residues surrounding the side chain of His-35. The average exchange rate has been determined from NMR exchange spectroscopy experiments and is 45 +/- 6 s(-)(1) at 41 degrees C. The exchange broadening is caused by the protonation/deprotonation equilibrium of His-35. The NMR results indicate that the two structures of azurin observed by X-ray diffraction of crystals at pH 5.5 and 9.0 [Nar, H., Messerschmidt, A., Huber, R., Van de Kamp, M., Canters, G. W. (1991) J. Mol. Biol. 221, 765-772] are present in solution and that they interconvert slowly.  相似文献   

9.
Two-dimensional proton NMR experiments have been used to sequentially assign resonances to all of the peptide backbone protons of turkey ovomucoid third domain (OMTKY3) except those of the N-terminal alpha-amino group whose signal was not resolved owing to exchange with the solvent. Assignments also have been made for more than 80% of the side-chain protons. Two-dimensional chemical shift correlated spectroscopy (COSY), relayed coherence transfer spectroscopy (RELAY), and two-dimensional homonuclear Hartmann-Hahn spectroscopy (HOHAHA) were used to identify the spin systems of almost half of the residues prior to sequential assignment. Assignments were based on two-dimensional nuclear Overhauser enhancements observed between adjacent residues. The secondary structure of OMTKY3 in solution was determined from additional assigned NOESY cross-peaks; it closely resembles the secondary structure determined by single-crystal X-ray diffraction of OMTKY3 in complex with Streptomyces griseus proteinase B [Fujinaga, M., Read, R.J., Sielecki, A., Ardelt, W., Laskowski, M., Jr., & James, M.N.G. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 4868-4872]. The NMR data provide evidence for three slowly exchanging amide protons that were not identified as hydrogen-bond donors in the crystal structure.  相似文献   

10.
Accurate 1H, 15N, and 13C chemical shift assignments were determined for staphylococcal nuclease H124L (in the absence of inhibitor or activator ion). Backbone 1H and 15N assignments, obtained by analysis of three-dimensional 1H-15N HMQC-NOESY data [Wang, J., Mooberry, E.S., Walkenhorst, W.F., & Markley, J. L. (1992) Biochemistry (preceding paper in this issue)], were refined and extended by a combination of homo- and heteronuclear two-dimensional NMR experiments. Staphylococcal nuclease H124L samples used in the homonuclear 1H NMR studies were at natural isotopic abundance or labeled randomly with 2H (to an isotope level of 50%); nuclease H124L samples used for heteronuclear NMR experiments were labeled uniformly with 15N (to an isotope level greater than 95%) or uniformly with 13C (to an isotope level of 26%). Additional nuclease H124L samples were labeled selectively by incorporating single 15N- or 13C-labeled amino acids. The chemical shifts of uncomplexed enzyme were then compared with those determined previously for the nuclease H124L.pdTp.Ca2+ ternary complex [Wang, J., LeMaster, D. M., & Markley, J.L. (1990) Biochemistry 29, 88-101; Wang, J., Hinck, A.P., Loh, S. N., & Markley, J.L. (1990) Biochemistry 29, 102-113; Wang, J., Hinck, A.P., Loh, S.N., & Markley, J.L. (1990) Biochemistry 29, 4242-4253]. The results reveal that the binding of pdTp and Ca2+ induces large shifts in the resonances of several amino acid segments. These chemical shift changes are interpreted in terms of changes in backbone torsion angles that accompany the binding of pdTp and Ca2+; changes at the binding site appear to be transmitted to other regions of the molecule through networks of hydrogen bonds.  相似文献   

11.
The high-resolution X-ray crystal structure of staphylococcal nuclease (SNase) suggests that the guanidinium groups of Arg 35 and Arg 87 participate as electrophilic catalysts in the attack of water on the substrate phosphodiester. Both arginine residues have been replaced with "conservative" lysine residues so that both the importance of these residues in catalysis and the effect of changes in electrostatic interactions on active site conformation can be assessed. The catalytic efficiencies of R35K and R87K are decreased by factors of 10(4) and 10(5) relative to wild-type SNase, with R87K showing a very significant reduction in its affinity for both DNA substrate and the competitive inhibitor thymidine 3',5'-bisphosphate (pdTp). The thermal denaturation behavior of both mutant enzymes differs from that of wild type both in the absence and in the presence of the active site ligands Ca2+ and pdTp. Both the 1H NMR chemical shifts and interresidue nuclear Overhauser effects (NOEs) of residues previously assigned to be in the hydrophobic core of SNase are altered in R35K and R87K. These observations, similar to those recently reported by our laboratories for substitutions for Glu 43 [Hibler, D. W., Stolowich, N. J., Reynolds, M. A., Gerlt, J. A., Wilde, J. A., & Bolton, P. H. (1987) Biochemistry 26, 6278; Wilde, J. A., Bolton, P. H., Dell'Acqua, M., Hibler, D. W., Pourmotabbed, T., & Gerlt, J. A. (1988) Biochemistry 27, 4127], suggest that lysine substitutions are not conservative in SNase and disrupt the conformation of the active site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Solution structure of the region 4 of sigma(70) subunit of Escherichia coli RNA polymerase, whose 4.2 subregion is involved in specific recognition of the -35 element of cognate promoters, has not been yet studied. Using multinuclear NMR spectroscopy, we have assigned recently all the backbone and aliphatic side-chain (13)C resonances for a recombinant His(6)-tagged protein containing the whole region 4 and a part of region 3.2 of sigma(70) in aqueous solution at pH 2.8 (Poznański, J., Zhukov, I., Bolewska, K., and Wierzchowski, K. L. (2001) J. Biomol. NMR 20, 181-2). The protein proved to be sufficiently soluble and did not aggregate only in the protonated state. In this paper, the structure and dynamics of this state at pH 2.8 have been extensively examined using CD and NMR spectroscopy. Both analysis of CD spectra and NMR observables (secondary chemical shifts of the (13)Calpha, (13)CO, and (1)Halpha nuclei and of vicinal (3)J(HNH)(alpha) coupling constants) indicated that a significant amount of helical structure remained in the protonated protein. The amount of this structure increased upon deprotonation of carboxylic amino acids, as shown by pH titration CD experiments. 2,2,2-Trifluoroethanol induced an even more extensive build up of this structure. Distribution along the protein sequence of the secondary shifts and (3)J(HNH)(alpha) couplings demonstrated partition of the helical secondary structure into three helices located similarly as in the crystal structures of the homologous region 4 of the sigma(A) subunit of Thermus aquaticus RNA polymerase (Campbell, E. A., Muzzin, O., Chlenov, M., Sun, J. L., Olson, A., Weinman, O., Trester-Zedlitz, M. L., and Darst, S. A. (2002) Mol. Cell 9, 527-39) and sigma(70) of the Thermus thermophilus RNA polymerase (Vassylyev, D. G., Sekine, S., Laptenko, O., Lee, J., Vassylyeva, M. N., Borukhov, S., and Yokoyama, S. (2002) Nature 417, 712-9.). Spectral density analysis of NMR relaxation parameters, R(1) and R(2), and [(1)H]-(15)N heteronuclear NOEs indicated that backbone fluctuations in the whole region embracing the three helices and intervening nonhelical sequences are severely restricted on the nanosecond time scale as compared with the N- and C-terminal protein segments. Inspection of the side-chain contacts stabilizing the crystal structures well explains the observed folding and solution properties of sigma(70)(4) protein in its protonated state.  相似文献   

13.
The HAMP domain plays an essential role in signal transduction not only in histidine kinase but also in a number of other signal-transducing receptor proteins. Here we expressed the EnvZ HAMP domain (Arg(180)-Thr(235)) with the R218K mutation (termed L(RK)) or with L(RK) connected with domain A (Arg(180)-Arg(289)) (termed LA(RK)) of EnvZ, an osmosensing transmembrane histidine kinase in Escherichia coli, by fusing it with protein S. The L(RK) and LA(RK) proteins were purified after removing protein S. The CD analysis of the isolated L protein revealed that it consists of a random structure or is unstructured. This suggests that the EnvZ HAMP domain by itself is unable to form a stable structure and that this structural fragility may be important for its role in signal transduction. Interestingly the substitution of Ala(193) in the EnvZ HAMP domain with valine or leucine in Tez1A1, a chimeric protein of Tar and EnvZ, caused a constitutive OmpC phenotype. The CD analysis of LA(RK)(A193L) revealed that this mutated HAMP domain possesses considerable secondary structures and that the thermostability of this entire LA(RK)(A193L) became substantially lower than that of LA(RK) or just domain A, indicating that the structure of the HAMP domain with the A193L mutation affects the stability of downstream domain A. This results in cooperative thermodenaturation of domain A with the mutated HAMP domain. These results are discussed in light of the recently solved NMR structure of the HAMP domain from a thermophilic bacterium (Hulko, M., Berndt, F., Gruber, M., Linder, J. U., Truffault, V., Schultz, A., Martin, J., Schultz, J. E., Lupas, A. N., and Coles, M. (2006) Cell 126, 929-940).  相似文献   

14.
Staphylococcal nuclease H124L is a recombinant protein produced in Escherichia coli whose sequence is identical with that of the nuclease produced by the V8 variant of Staphylococcus aureus. The enzyme-metal ion activator-nucleotide inhibitor ternary complex, nuclease H124L-thymidine 3',5'-bisphosphate-Ca2+, was investigated by two-dimensional (2D) NMR techniques. Efficient overproduction of the enzyme facilitated the production of random fractionally deuterated protein, which proved essential for detailed NMR analysis. 1H NMR spin systems were analyzed by conventional 2D 1H[1H] methods: COSY, relayed COSY, HOHAHA, and NOESY. Assignments obtained by 1H NMR experiments were confirmed and extended by 1H-13C and 1H-15N heteronuclear NMR experiments [Wang, J., Hinck, A. P., Loh, S. N., & Markley, J. L. (1990) Biochemistry (following paper in this issue)]. Spectra of the ternary complexes prepared with protein at natural abundance and at 50% random fractional deuteration provided the information needed for sequence-specific assignments of 121 of the 149 amino acid residues. Short- and intermediate-range NOE connectivities allowed the determination of secondary structural features of the ternary complex: three alpha-helical domains and three antiparallel beta-pleated sheets with several reverse turns. A number of nonsequential long-range HN-HN and H alpha-HN connectivities revealed additional information about the spatial arrangement of these secondary structural elements. The solution structure of this ternary complex shows a close correspondence to the crystal structure of the nuclease wt-thymidine 3',5'-bisphosphate-Ca2+ ternary complex [Cotton, F. A., Hazen, E. E., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555].  相似文献   

15.
The immunoglobulin (Ig) constant CH2 domain is critical for antibody effector functions. Isolated CH2 domains are promising scaffolds for construction of libraries containing diverse binders that could also confer some effector functions. We have shown previously that an isolated human CH2 domain is relatively unstable to thermally induced unfolding, but its stability can be improved by engineering an additional disulfide bond (Gong, R., Vu, B. K., Feng, Y., Prieto, D. A., Dyba, M. A., Walsh, J. D., Prabakaran, P., Veenstra, T. D., Tarasov, S. G., Ishima, R., and Dimitrov, D. S. (2009) J. Biol. Chem. 284, 14203-14210). We have hypothesized that the stability of this engineered antibody domain could be further increased by removing unstructured residues. To test our hypothesis, we removed the seven N-terminal residues that are in a random coil as suggested by our analysis of the isolated CH2 crystal structure and NMR data. The resulting shortened engineered CH2 (m01s) was highly soluble, monomeric, and remarkably stable, with a melting temperature (T(m)) of 82.6 °C, which is about 10 and 30 °C higher than those of the original stabilized CH2 (m01) and CH2, respectively. m01s and m01 were more resistant to protease digestion than CH2. A newly identified anti-CH2 antibody that recognizes a conformational epitope bound to m01s significantly better (>10-fold higher affinity) than to CH2 and slightly better than to m01. m01s bound to a recombinant soluble human neonatal Fc receptor at pH 6.0 more strongly than CH2. These data suggest that shortening the m01 N terminus significantly increases stability without disrupting its conformation and that our approach for increasing stability and decreasing size by removing unstructured regions may also apply to other proteins.  相似文献   

16.
G D Henry  B D Sykes 《Biochemistry》1990,29(26):6303-6313
The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous 1H nuclear magnetic resonance (NMR) study [O'Neil, J. D. J., & Sykes, B. D. (1988) Biochemistry 27, 2753-2762], multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow "kinetic sets" containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at least 10(5)-fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein we use 15N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiment [Morris, G. A., & Freeman, R. (1979) J. Am. Chem. Soc. 101, 760-762] can be used to transfer magnetization to the 15N nucleus from a coupled proton; when 15N-labeled protonated protein is dissolved in 2H2O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H+ and OH- ions. Base catalysis is significantly more effective, resulting in a characteristic minimum rate in model peptides at pH approximately equal to 3. Rate versus pH profiles have been obtained by using the INEPT experiment for the amides of leucine-14, leucine-41, tyrosine-21, tyrosine-24, and valines-29, -30, -31, and -33 in M13 coat protein. The valine residues exchange most slowly and at very similar rates, showing an apparent 10(6)-fold retardation over poly(DL-alanine). A substantial basic shift in the pH of the minimum rate (up to 1.5 pH units) was also observed for some residues. Possible reasons for the shift include accumulation of catalytic H+ ions at the negatively charged micelle surface or destabilization of the negatively charged transition state of the base-catalyzed reaction by either charge or hydrophobic effects within the micelle. The time-dependent exchange-out experiment is suitable for slow exchange rates (kex), i.e., less than (1-2) x 10(-4) s-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
SH Lee  EJ Cha  JE Lim  SH Kwon  DH Kim  H Cho  KH Han 《Molecules and cells》2012,34(2):165-169
The hepatitis B virus x protein (HBX) is expressed in HBVinfected liver cells and can interact with a wide range of cellular proteins. In order to understand such promiscuous behavior of HBX we expressed a truncated mini-HBX protein (named Tr-HBX) (residues 18-142) with 5 Cys → Ser mutations and characterized its structural features using circular dichroism (CD) spectropolarimetry, NMR spectroscopy as well as bioinformatics tools for predicting disorder in intrinsically unstructured proteins (IUPs). The secondary structural content of Tr-HBX from CD data suggests that Tr-HBX is only partially folded. The protein disorder prediction by IUPred reveals that the unstructured region encompasses its N-terminal ~30 residues of Tr-HBX. A two-dimensional (1)H-(15)N HSQC NMR spectrum exhibits fewer number of resonances than expected, suggesting that Tr-HBX is a hybrid type IUP where its folded C-terminal half coexists with a disordered N-terminal region. Many IUPs are known to be capable of having promiscuous interactions with a multitude of target proteins. Therefore the intrinsically disordered nature of Tr-HBX revealed in this study provides a partial structural basis for the promiscuous structure-function behavior of HBX.  相似文献   

18.
The interaction between IscU and HscB is critical for successful assembly of iron-sulfur clusters. NMR experiments were performed on HscB to investigate which of its residues might be part of the IscU binding surface. Residual dipolar couplings ( (1) D HN and (1) D CalphaHalpha) indicated that the crystal structure of HscB [Cupp-Vickery, J. R., and Vickery, L. E. (2000) Crystal structure of Hsc20, a J-type cochaperone from Escherichia coli, J. Mol. Biol. 304, 835-845] faithfully represents its solution state. NMR relaxation rates ( (15)N R 1, R 2) and (1)H- (15)N heteronuclear NOE values indicated that HscB is rigid along its entire backbone except for three short regions which exhibit flexibility on a fast time scale. Changes in the NMR spectrum of HscB upon addition of IscU mapped to the J-domain/C-domain interface, the interdomain linker, and the C-domain. Sequence conservation is low in the interface and in the linker, and NMR changes observed for these residues likely result from indirect effects of IscU binding. NMR changes observed in the conserved patch of residues in the C-domain (L92, M93, L96, E97, E100, E104, and F153) were suggestive of a direct interaction with IscU. To test this, we replaced several of these residues with alanine and assayed for the ability of HscB to interact with IscU and to stimulate HscA ATPase activity. HscB(L92A,M93A,F153A) and HscB(E97A,E100A,E104A) both showed decreased binding affinity for IscU; the (L92A,M93A,F153A) substitution also strongly perturbed the allosteric interaction within the HscA.IscU.HscB ternary complex. We propose that the conserved patch in the C-domain of HscB is the principal binding site for IscU.  相似文献   

19.
Dynamics of fd coat protein in the bacteriophage   总被引:1,自引:0,他引:1  
The dynamics of the coat protein in fd bacteriophage are described with solid-state 15N and 2H NMR experiments. The virus particles and the coat protein subunits are immobile on the time scales of the 15N chemical shift anisotropy (10(3) Hz) and 2H quadrupole (10(6) Hz) interactions. Previously we have shown that the Trp-26 side chain is immobile, that the two Tyr and three Phe side chains undergo only rapid twofold jump motions about their C beta-C gamma bond axis [Gall, C. M., Cross, T. A., DiVerdi, J. A., & Opella, S. J. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 101-105], and that most of the backbone peptide linkages are highly constrained but do undergo rapid small amplitude motions [Cross, T. A., & Opella, S. J. (1982) J. Mol. Biol. 159, 543-549] in the coat protein subunits in the virus particles. In this paper, we demonstrate that the four N-terminal residues of the coat protein subunits are highly mobile, since both backbone and side-chain sites of these residues undergo large amplitude motions that are rapid on the time scales of the solid-state NMR experiments. In addition, the dynamics of the methyl-containing aliphatic residues Ala, Leu, Val, Thr, and Met are analyzed. Large amplitude jump motions are observed in nearly all of these side chains even though, with the exception of the N-terminal residue Ala-1, their backbone peptide linkages are highly constrained. The established information about the dynamics of the structural form of fd coat protein in the virus particle is summarized qualitatively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cytoplasmic ribosomes have been isolated from wheat germ, and the structure of ribosomal subunits has been examined by electron microscopy of negatively stained preparations. Small (40 S) subunits show structural features generally regarded as characteristic of eukaryotic particles, while large (60 S) subunits show shapes that are equally well described by models of prokaryotic 50 S particles. Small subunit 18 S RNA contains 2 residues of N6,N6-dimethyladenosine 19 and 20 residues from the 3'-end (Hagenbüchle, O., Santer, M., Steitz, J. A., and Mans, R. J. (1978) Cell 13, 551-563). Nucleoside analysis by high performance liquid chromatography shows no other residues of this component in the RNA. Anti-dimethyladenosine immunoglobulins were reacted with wheat germ 40 S subunits, and the resulting complexes were studied by electron microscopy in order to localize the nucleoside. In about 90% of the complexes observed, antibody-subunit contact was consistent with a single binding site. We place the dimethyladenosine residues at or near the end of the platform of the 40 S particle in a position nearly equivalent to that previously identified in prokaryotic and chloroplast subunits (Trempe, M. R., and Glitz, D. G. (1981) J. Biol. Chem. 256, 11873-11879).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号