首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nucleotide sequence of the immunity and lysis region of the ColE9-J plasmid   总被引:8,自引:0,他引:8  
We have determined the nucleotide sequence of a 1500 bp fragment of the ColE9-J plasmid which encodes colicin E9 immunity and colicin E5 immunity and contains two lys genes. Open reading frames corresponding to the four genes have been located and their position confirmed by transposon mutagenesis of sub-clones of the ColE9-J plasmid. The E9imm gene shows 69% homology at both the nucleotide and the amino acid level to the previously sequenced E2imm gene. The E5imm gene shows little homology to any other E colicin immunity gene which has been sequenced. The lys gene distal to the 3' end of the E5imm gene shows considerable sequence homology to all other previously sequenced E colicin lys genes. The lys gene distal to the 3' end of the E9imm gene is identical to the pColE2 and pColE3 lys genes for the first 59 nucleotides but encodes a much smaller gene product than any other lys gene which has been sequenced. The two lys genes sequenced here are exceptions to Shepherd's rule concerning the number of RNY codons in the three possible reading frames.  相似文献   

2.
G Mark  P Lawrence  R James 《Gene》1984,29(1-2):145-155
We have determined the restriction map of the ColE8-J plasmid after cloning it into the pBR322 vector. By subcloning and transposon mutagenesis we have localized the colicin immunity gene, the colicin structural gene, and lys, the region that determines MC sensitivity. In contrast to the ColE3-CA38 plasmid, the genes coding for colicin E8 production and immunity cannot be cloned on a single EcoRI fragment. Insertion of Tn5 transposons into the colicin structural gene region of the recombinant plasmid inactivated colicin production and MC sensitivity. Insertion of transposons into the lys region reduced colicin E8 production and MC induced lysis, the extent of which was dependent upon the precise site of insertion. We propose that the colicin E8 structural gene and lys must be transcribed from a common promoter situated proximal to the structural gene, whilst the colicin E8 immunity gene is transcribed from a second promoter. The lys region is responsible both for cell lysis after MC induction and positive regulation of colicin E8 synthesis.  相似文献   

3.
The primary structures of the immunity (Imm) and lysis (Lys) proteins, and the C-terminal 205 amino acid residues of colicin E8 were deduced from nucleotide sequencing of the 1,265 bp ClaI-PvuI DNA fragment of plasmid ColE8-J. The gene order is col-imm-lys confirming previous genetic data. A comparison of the colicin E8 peptide sequence with the available colicin E2-P9 sequence shows an identical receptor-binding domain but 20 amino acid replacements and a clustering of synonymous codon usage in the nuclease-active region. Sequence homology of the two colicins indicates that they are descended from a common ancestral gene and that colicin E8, like colicin E2, may also function as a DNA endonuclease. The native ColE8 imm (resident copy) is 258 bp long and is predicted to encode an acidic protein of 9,604 mol. wt. The six amino acid replacements between the resident imm and the previously reported non-resident copy of the ColE8 imm ([E8 imm]) found in the ribonuclease-producing ColE3-CA38 plasmid offer an explanation for the incomplete protection conferred by [E8 Imm] to exogenously added colicin E8. Except for one nucleotide and amino acid change in the putative signal peptide sequence, the ColE8 lys structure is identical to that present in ColE2-P9 and ColE3-CA38.  相似文献   

4.
The nucleotide sequence of a 1124 bp fragment of the ColE5-099 plasmid which encodes colicin E5 immunity, a lys gene involved in colicin release from the host cell, and the 3' end of the colicin E5 structural gene has been determined. Open reading frames corresponding to the three genes have been located by analogy with similar sequences from other E colicin plasmids. The location of these open reading frames corresponds with the position of the genes as determined by subcloning and transposon mutagenesis. The amino acid sequence of the carboxy-terminal 107 amino acid residues of the colicin E5 gene shows no homology with any other E colicin, suggesting a different mode of action in killing sensitive cells. A comparison of the nucleotide sequence of this region of the ColE5-099 plasmid with that of the equivalent region of the ColE9-J plasmid suggests a close evolutionary relationship between these two plasmids.  相似文献   

5.
We have constructed two new promoter probe vectors which carry a polylinker derived from plasmid pUC19 proximal to the 5' end of a promoter-less galactokinase gene. Using these two vectors we have demonstrated that the ColE3imm gene and the ColE8imm gene present on the ColE3-CA38 plasmid have their own promoters, independent of the SOS promoter of the colicin E3 structural gene. The activity of two terminators, one located proximal to the 5' end of the ColE8imm gene, the other located proximal to the 5' end of the lys gene, were shown by a comparison of the galactokinase activity conferred by several of the recombinant plasmids.  相似文献   

6.
Incompatibility between E colicin plasmids   总被引:1,自引:0,他引:1  
We have tested the ability of pairs of colicin E plasmids to replicate stably in the same cell line. Although many of the pairs of E colicin plasmids were compatible, plasmids ColE3-CA38, ColE7-K317 and ColE8-J were mutually incompatible, as were ColE5-099, ColE6-CT14 and ColE9-J. Incompatibility between ColE6-CT14 and ColE5-099 or ColE9-J was asymmetrical, whereas incompatibility between the other plasmid pairs was symmetrical.  相似文献   

7.
Summary The nucleotide sequences of 1288 bp of plasmid ColE5-099, 1609 bp of ColE6-CT14 and 2099 bp of ColE9-J were determined. These sequences encompass the structural genes for the C-terminal receptor-binding and nuclease domains of colicins E5, E6 and E9, theircis- ortrans-acting immunity proteins and four lysis proteins including an atypical one of non-lipoprotein nature (Lys*) present in the ColE9-J plasmid. The ColE6 gene organisation, in the ordercol-imm-E8imm-lys, is identical to that found in the previously described double-immunity gene system of ColE3-CA38 (an RNase producer). The corresponding genes in the two plasmids are 87%–94% homologous. In ColE9-J, the genes are organised ascol-imm-lys *-E5imm-lys. The E9col-imm gene pair is homologous to the colicin E2-P9 type (a DNase producer). Downstream from E9imm is an E5imm (designated E5imm[E9]) which istrans-acting. Neither the predicted structures of E5Imm[E9] nor thecis-acting Imm resident in the ColE5-099 plasmid which differs by a single amino acid shows any resemblance to other immunity structures which have been sequenced. Furthermore, the E5col sequences differ from those predicted previously for other colicins except for the conservedbtuB-specified receptor-binding domain. A novel 205 nucleotide long insertion sequence is found in the ColE9-J plasmid. This insertion sequence, which we named ISE9, has features reminiscent of the degenerate transposon IS101 previously found in plasmid pSC101. One effect of ISE9 is the presence of the atypical lysis gene,lys *. The presence of a transposon-like element in the ColE9 plasmid exemplifies a new phenomenon relevant to the evolution of colicin E plasmids. Issued as NRCC publication no. 30065  相似文献   

8.
Using the M13 dideoxy sequencing technique, we have established the DNA sequences of colicins E2 and E3 which encompass the receptor-binding and the catalytic domains of each of the nucleases, and their immunity (imm) genes. The imm gene of plasmid ColE2-P9 is 255 bp long and is separated from the end of the col gene by a dinucleotide. This gene pair is arranged similarly in plasmid ColE3-CA38 except that the intergenic space is 9 bp and the E3 imm gene is one codon shorter than its E2 counterpart. Comparisons of the E2 and E3 imm sequences indicate considerable divergence whereas the receptor-binding domains of both colicins are highly conserved. The two nuclease domains appear to share some sequence homology. A possible evolutionary relationship between colicin E3 and other microbial extracellular ribonucleases is also suggested from the sequence alignment analysis.  相似文献   

9.
M Toba  H Masaki    T Ohta 《Journal of bacteriology》1988,170(7):3237-3242
Colicin E8-J and its immunity protein were characterized with regard to their activities and gene structures. Colicin E8 is a complex of proteins A and B; protein A (the naked E8) exhibits an apparently nonspecific DNase activity that is inhibited by protein B (the immunity protein), as in the case of colicin E2. The nucleotide sequence of the downstream half of the colicin operon of ColE8-J was determined to be highly homologous to that of ColE2-P9, with the exception of the hot spot region of the 3'-terminal segment of the colicin gene and the adjacent immunity gene. The immE2-like gene of ColE3-CA38 was, as assumed previously, extensively homologous to the immE8 gene of ColE8-J, and thus, ColE8-J was shown to be situated between ColE2-P9 and ColE3-CA38 in the evolution of the E-group Col plasmids.  相似文献   

10.
Plasmid-encoded regulation of colicin E1 gene expression.   总被引:3,自引:1,他引:2       下载免费PDF全文
A plasmid-encoded factor that regulates the expression of the colicin E1 gene was found in molecular cloning experiments. The 2,294-base-pair AvaII fragment of the colicin E1 plasmid (ColE1) carrying the colicin E1 structural gene and the promoter-operator region had the same information with respect to the repressibility and inducibility of colicin E1 synthesis as the original ColE1 plasmid. An operon fusion was constructed between the 204-bp fragment containing the colicin E1 promoter-operator and xylE, the structural gene for catechol 2,3-dioxygenase encoded on the TOL plasmid of Pseudomonas putida. The synthesis of the dioxygenase from the resulting plasmid occurred in recA+, but not in recA- cells and was derepressed in the recA lexA(Def) double mutant. These results indicate that the ColE1 plasmid has no repressor gene for colicin E1 synthesis and that the lexA protein functions as a repressor. Colicin E1 gene expression was adenosine 3',5'-phosphate (cAMP) dependent. Upon the removal of two PvuII fragments (2,000 bp in length) from the ColE1 plasmid, the induced synthesis of colicin E1 occurred in the adenylate-cyclase mutant even without cAMP. The 3,100-bp Tth111I fragment of the ColE1 plasmid cloned on pACYC177 restored the cAMP dependency of the deleted ColE1 plasmid. Since the deleted fragments correspond to the mobility region of ColE1, the cAMP dependency of the gene expression should be somehow related to the plasmid mobilization function.  相似文献   

11.
Thirteen ColE plasmids representing the E2-E7 types have been compared by restriction mapping. Over 80% of their restriction sites were found to be similarly positioned, indicating that these plasmids share a common structure. Three variants are ColE2-CA42 and ColE7-K317, both of which contain 1.8-kb DNA segments in place of a 2.5-kb segment common to the other plasmids, and ColE6-CT14, which has an additional 5.0-kb DNA segment compared to the other plasmids. The colicin (col), immunity (imm), and colicin release (hic) genes of these plasmids have been localized to regions corresponding to those known for ColE3-CA38 and ColE2-P9, with the imm and hic genes adjacent to the 3' end of the col gene. Active colicin is produced from hybrid col genes containing 5' and 3' ends from different E-type plasmids. The 3'-termini of the fused col genes specify the colicin type.  相似文献   

12.
Nucleotide sequence and gene organization of ColE1 DNA   总被引:48,自引:0,他引:48  
The primary structure of the plasmid ColE1 DNA has been determined. The plasmid DNA consists of 6646 base pairs (molecular mass of 4.43 MDa) and is 48.46% in GC content. The phi 80 trp insert of the composite plasmid of ColE1, pVH51, has also been determined. The determination of the nucleotide sequence of ColE1 DNA provides the basis for examining the relationships between the DNA sequence and the gene organization of the plasmid. The focus of this paper is to use this sequence data coupled with a review of the literature and our own work to examine the nine known functional regions of ColE1: imm (colicin E1 immunity), rep (replication function), inc (plasmid incompatibility and copy number control), bom (basis of mobility), rom (modulator of inhibition of primer formation by RNA I), mob (plasmid mobilization), cer (determinant for conversion of plasmid multimers to monomers), exc (plasmid entry exclusion), cea (structural gene for colicin E1), and kil (structural gene for the Kil protein).  相似文献   

13.
H Masaki  A Akutsu  T Uozumi  T Ohta 《Gene》1991,107(1):133-138
Plasmid immunity to a nuclease-type colicin is defined by the specific binding of an immunity (or inhibitor) protein, Imm, to the C-terminal nuclease domain, T2A, of the colicin molecule. Whereas most regions of colicin operons exhibit extensive sequence identity, the small plasmid region encoding T2A and Imm is exceptionally varied. Since immunity is essential for the survival of the potentially lethal colicin plasmid (Col), we inferred that T2A and Imm must have co-evolved, retaining their mutual binding specificities. To evaluate this co-evolution model for the col and imm genes of ColE3 and ColE6, we attempted to obtain a stabilized clone from a plasmid which had been destabilized with a non-cognate immunity gene. A hybrid Col, in which the immE3 gene of the ColE3 was replaced with immE6 from ColE6, was lethal to the host cells upon SOS induction. From among this suicidal cell population, we isolated a stabilized, i.e., evolved, clone which produced colicin E3 (E3) stably and exhibited immunity to E3. This change arose from only a single mutation in ImmE6, from Trp48 to Cys, the same residue as in the ImmE3 sequence. In addition, we constructed a series of chimeric genes through homologous recombination between immE3 and immE6. Characterization of these chimeric immunity genes confirmed the above finding that colicins E3 and E6 are mostly distinguished by only Cys48 of the ImmE3 protein.  相似文献   

14.
cea-kil operon of the ColE1 plasmid.   总被引:18,自引:15,他引:3       下载免费PDF全文
We isolated a series of Tn5 transposon insertion mutants and chemically induced mutants with mutations in the region of the ColE1 plasmid that includes the cea (colicin) and imm (immunity) genes. Bacterial cells harboring each of the mutant plasmids were tested for their response to the colicin-inducing agent mitomycin C. All insertion mutations within the cea gene failed to bring about cell killing after mitomycin C treatment. A cea- amber mutation exerted a polar effect on killing by mitomycin C. Two insertions beyond the cea gene but within or near the imm gene also prevented the lethal response to mitomycin C. These findings suggest the presence in the ColE1 plasmid of an operon containing the cea and kil genes whose product is needed for mitomycin C-induced lethality. Bacteria carrying ColE1 plasmids with Tn5 inserted within the cea gene produced serologically cross-reacting fragments of the colicin E1 molecule, the lengths of which were proportional to the distance between the insertion and the promoter end of the cea gene.  相似文献   

15.
R J Watson  L P Visentin 《Gene》1982,19(2):191-200
The colicin and immunity genes of plasmid ColE3-CA38 have been localized by characterization of bacteria carrying its cloned restriction fragments. They are within a 3.14-kb EcoRI segment, such that the immunity gene contains the KpnI site, and the colicin gene is adjacent to it within a 2.1-kb KpnI-HincII segment. The immunity gene and one end of the colicin gene are in the region of ColE3-CA38 which is not homologous to the closely related plasmid ColE2-P9. A 0.64-kb PvuI-EcoRI segment of the plasmid adjacent to that containing the colicin and immunity genes was found to augment colicin production on solid media, and also affected the morphology of clearing zones produced by the cells when used as indicators in overlays of stabs of colicin E2 or E7 producers. The 0.64-kb segment was required in its native orientation relative to the 3.14-kb EcoRI segment to cause its effects.  相似文献   

16.
The immunity genes of colicins E2 and E8 are closely related   总被引:3,自引:0,他引:3  
We have determined the nucleotide sequence of the newly characterized colicin E8imm gene which exists in tandem with the colicin E3imm gene in the: ColE3-CA38 plasmid. Comparison of these immunity structures reveals considerable sequence divergence) but the ColE8imm gene is markedly homologous to the colicin E2imm gene from the ColE2-P9 plasmid.Issued as NRCC no. 23586 and as CBRI no. 1480.  相似文献   

17.
Structure and expression of the ColE2-P9 immunity gene.   总被引:4,自引:0,他引:4       下载免费PDF全文
H Masaki  M Toba    T Ohta 《Nucleic acids research》1985,13(5):1623-1635
  相似文献   

18.
19.
We have investigated the immunity to E colicins conferred by three group A klebicin plasmids. pP5a, which encodes klebicin A1-P5, like pClo-DF13, confers immunity to colicin E6 on Escherichia coli K12, whilst pP5b and pP3, which encode klebicins A2-P5 and A3-P3 respectively, both confer immunity to colicin E3. We have determined the restriction endonuclease and functional maps of the three group A klebicin plasmids. By sub-cloning and transposon mutagenesis we have investigated the relationship between the klebicin immunity and the E colicin immunity conferred by these plasmids. The colicin E6 and the klebicin A1 immunity are encoded by a single gene present on pP5a. The colicin E3 and the klebicin A2 immunity are encoded by a single gene present on pP5b. The colicin E3 and the klebicin A3 immunity are encoded by separate genes present on pP3. Recombinant pML8412, which is derived from the ColE6-CT14 plasmid and encodes colicin E6 immunity, confers klebicin A1-P5 immunity upon Klebsiella pneumoniae UNF5023. Recombinant pKC23, which is derived from the ColE3-CA38 plasmid and confers colicin E3 immunity, confers immunity to klebicin A2-P5, but not to klebicin A3-P3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号