首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modification of histidine residue(s) by diethylpyrocarbonate treatment of submitochondrial particles obtained by sonication results in inhibition of ATPase activity and stimulation of oligomycin-sensitive H+ conduction. The inhibition of the ATPase (EC 3.6.1.3) activity persisted in F1 isolated from diethylpyrocarbonate-treated submitochondrial particles, which exhibited the absorbance spectrum of modified histidine. Thus the inhibition of the ATPase activity results from histidine modification in F1 subunits. Removal of the natural inhibitor protein from submitochondrial particles resulted in stimulation of proton conduction. After removal of F1 inhibitor protein from the particles the stimulatory effect exerted by diethylpyrocarbonate treatment on proton conduction was lost. Reconstitution experiments showed that purified F1 inhibitor protein lost, after histidine modification, its capacity to inhibit the ATPase activity and proton conduction. These observations show that the stimulation of proton conduction by the ATPase complex effected by diethylpyrocarbonate treatment results from histidine modification in F1 inhibitor protein.  相似文献   

2.
R J Altiere  M A Inchiosa 《Life sciences》1980,26(18):1523-1534
An indole metabolite of epinephrine (an isomer of adrenochrome) was shown to be a potent inhibitor (EC50 of 1.50 μM to 1.85 μM) of myosin, actomyosin, and myofibrillar ATPase when assayed at or near physiologic ionic strength and pH. The inhibition of actomyosin ATPase by this epinephrine derivative was demonstrated to be competetive in nature. Complete inhibition of ATPase activity was never achieved under physiological conditions; maximum inhibition was 50% to 60%. It is concluded that the inhibitor reduced ATPase activity by reversibly attaching to sulfhydryl groups associated with ATPase activity. The reduction of ATPase activity by 50% may be explained by the known heterogeneity of the ATPase sites on myosin; only one-half of these sites may be sensitive or accessible to the inhibitor in the state of aggregation of myosin at physiologic ionic strength. The inhibitor was found to have no effect on hog cerebral cortex Na+,K+-activated ATPase, suggesting that it may be selective for contractile protein ATPase. These results further support the hypothesis proposed earlier from this laboratory that this inhibitory indole metabolite of epinephrine (which is formed only in smooth muscles relaxed by epinephrine) may be part of the mechanism by which epinephrine produces relaxation in certain smooth muscles.  相似文献   

3.
Conditions were selected which enable a quantitative assay of the ATPase inhibitor protein in submitochondrial particles. It was found that the isolated soluble inhibitor exhibits a marked pH-dependent hysteretic behaviour, i. e., an instant jump of pH for the inhibitor solution from 4.8 to 8.2 induced a slow alteration of its activity as measured by the inhibition of ATP hydrolysis by submitochondrial particles. In acid media (pH less than 6.8), the inhibitor is in the active, whereas in alkaline media (pH greater than 6.8) in the inactive state; the apparent pKa value for the cooperative active/inactive transition is 6.8. Treatment of the inhibitor protein with diethylpyrocarbonate, a specific reagent for histidine, completely abolishes its inhibitory activity. Two types of the inhibitor protein--ATPase interaction were revealed, i.e., reversible (ATP-independent) and irreversible (ATP-dependent) ones. Both reactions, i.e., ATP hydrolysis and ATP inhibition by the inhibitor in the presence of Mg2+ are characterized by a hyperbolic dependence of the reaction rate on ATP concentration; however, for both reactions the apparent KmATP values (50 and 5 microM, respectively) differ significantly (pH 8.0). Thus, the inhibitor--ATPase interaction shows that there exists a specific site for ATP in the ATPase which is different from the catalytic one. A model for the inhibitor protein interaction with ATPase which takes account of a slow pH-dependent conformational transformation of the inhibitor protein is proposed.  相似文献   

4.
1. The mitochondrial ATPase of Acanthamoeba castellanii accumulated discontinuously in synchronous cultures prepared by a minimally perturbing size-selection technique. 2. Enzyme activity per ml of culture doubled overall during one cell cycle time of 8 h, but oscillated to give seven maxima during this period. Similar oscillations were observed in the specific activities of ATPase and of the naturally occurring inhibitor protein. 3. These variations in enzyme activity reflected changes in amount of enzyme protein as assayed by an immunological technique. 4. Large variations in I50 values (micrograms of inhibitor/mg of protein necessary for 50% inhibition of inhibitor-sensitive activity) for inhibition of ATPase activity by seven different inhibitors of energy conservation were observed. Activity was more sensitive to inhibition by oligomycin, efrapeptin, citreoviridin and quercetin when values were highest. 5. The results are discussed in relation to the phased organization of biosynthesis and degradation of cellular components known to occur during the cell cycle of this organization.  相似文献   

5.
An endogenous ATPase inhibitor protein has been identified and isolated for the first time from plant mitochondria. The inhibitor protein was isolated from potato (Solanum tuberosum) tuber mitochondria and purified to homogeneity. The isolated inhibitor is a heat-stable, trypsin-sensitive, basic protein, with a molecular mass approximately 8.3 kDa. Amino acid analysis reveals a high content of glutamic acid, lysine and arginine and the absence of proline; threonine and leucine. The interaction of the inhibitor with F1-ATPase requires the presence of Mg2(+)-ATP in the incubation medium. The ATPase activity of isolated F1 is inhibited to 50% in the presence of 14 micrograms inhibitor/mg F1. A stoichiometry of 1.3 mol inhibitor/mol F1 for complete inhibition can be calculated from this value. The potato ATPase inhibitor is also a potent inhibitor of the ATPase activity of the isolated yeast F1. The inhibitor resembles the ATPase inhibitors of yeast and mammalian mitochondria, and does not seem to be related to the inhibitory peptide, epsilon subunit, of chloroplast ATPase.  相似文献   

6.
1. DDT is a weak inhibitor of the ATPase of housefly muscle mitochondria in the absence of Mg2+ but an activator in the presence of Mg2+. 2. By contrast, DDT and several p,p'-substituted alpha-trichlomethylbenzylanilines were strong inhibitors of the ATPase activity in the presence of the uncoupler, dinitrophenol. 3. Maximum inhibition of the DNP-ATPase was achieved when the ATPase complex was dissociated from its endogenous protein inhibitor. 4. The inhibition by DDT was noncompetitive, maximum at acid pH and independent of temperature. The inhibition was counteracted by exogenous phosphatidylcholine and phosphatidylethanolamine. 5. The ATPase was also activated by NH+4 in the presence of valinomycin. This activation was reversed by K+ and strongly inhibited by DDT. 6. The possible mechanisms involved in the inhibition by DDT are discussed.  相似文献   

7.
The effect of the natural ATPase inhibitor and octylguanidine on the ATPase activity of soluble oligomycin-insensitive mitochondrial F1 were compared. Both compounds induced a maximal inhibition of 60-80% in various preparation of F1 studied. The inhibition was of the uncompetitive type with respect to MgATP, and the action of the compounds was partially additive. The data suggest that octylguanidine reproduces the action of the natural ATPase inhibitor. Alkylammonium salts also affect the ATPase activity in a similar form. F1 bound to Sepharose-hexylammonium is largely inactive, whilst free hexylammonium at higher concentrations induces only a partial inhibition of the activity. This suggests that the degree of immobilization of F1 is related to the magnitude of inhibition of ATPase activity induced by alkyl cations. The binding of F1 to Sepharose-hexylammonium is prevented by high concentrations of Na+ or K+.  相似文献   

8.
An antibody was raised to cross-linked ox-heart mitochondrial inhibitor protein, which cross-reacts with the free inhibitor but with no other mitochondrial membrane protein. This antibody yields an immunoprecipitate with the cross-linked inhibitor protein, but a soluble antibody-antigen complex with free inhibitor. The antibody binds well to inhibitor protein whether the latter is complexed with F1-ATPase or not. Antibody binding has no effect on the ability of the inhibitor protein to inhibit the ATPase activity of F1. These findings suggest that the antibody does not block the site of interaction between the inhibitor and F1. The inhibitor protein content of submitochondrial membrane preparations was determined by radioimmunoassay, activity measurements and an immunochemical 'back titration' technique. The inhibitor content of the membranes is shown to decrease after energisation, suggesting a loss of inhibitor from the membranes into solution. Binding antibody to the inhibitor protein on submitochondrial particles has no effect on the steady-state rate of phosphorylation, but it increases the lag phase preceding phosphorylation from 30 to 54 s. The rate constant for the approach to the steady state drops from 0.078 to 0.052 s-1. This effect confirms that the lag phase is due to inhibition of phosphorylation by the inhibitor protein. The increase in ATPase activity following energisation takes place by a fast phase (80% maximal activity reached within 90 s) and a slower phase (lasting about 10 min.). The rate constant of the rapid phase (0.017 s-1) is of the same order as that for the activation of phosphorylation. It is concluded that the rapid phase of ATPase induction is fast enough for this process to occur simultaneously with the activation of phosphorylation.  相似文献   

9.
Dennis R. Lang  Efraim Racker 《BBA》1974,333(2):180-186
Quercetin (3,3′,4′,5,7-pentahydroxyflavone) shares certain properties with the mitochondrial ATPase inhibitor protein. At low concentrations it inhibits both soluble and particulate mitochondrial ATPase and has no effect on oxidative phosphorylation in submitochondrial particles. Unlike the mitochondrial inhibitor protein quercetin inhibits the ATP-dependent reduction of NAD+ by succinate in fully reconstituted submitochondrial particles. A comparison of various flavones indicates that the hydroxyl groups at the 3′ and perhaps 3 position are important for the inhibition of ATPase activity.  相似文献   

10.
Caldesmon, a calmodulin and actin binding protein, has been shown to exist in platelet. In this report, it is shown that caldesmon specifically inhibits the effect of tropomyosin to enhance the actomyosin ATPase activity in platelet. Platelet tropomyosin enhances the MgATPase activity of platelet actomyosin. This effect is abolished by platelet caldesmon. In the absence of tropomyosin, however, caldesmon has no effect on the ATPase activity. The inhibition is not due to displacement of the binding of tropomyosin to F-actin by caldesmon. The result indicates that caldesmon is the specific inhibitor of tropomyosin in resting platelet.  相似文献   

11.
1. Peroxisomes were isolated from bovine and rat liver by use of differential and density gradient centrifugations. 2. In the final density gradient (Nycodenz) a distinct peak of ATPase activity codistributed with the peroxisome marker catalase and was well separated from the bulk of the ATPase activity and from markers for other subcellular organelles. 3. The peroxisome-associated ATPase had a pH optimum of 7.5 and was inhibited by N-ethylmaleimide, by N,N'-dicyclohexylcarbodiimide and by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, but was unaffected by up to 30 microM n-tributyltin chloride. 4. Prolonged incubation with oligomycin at high concentrations indicated that 50% of peroxisomal ATPase was resistant to this inhibitor. The oligomycin-sensitive ATPase activity required at least a four-fold higher ratio of inhibitor to protein for inhibition than mitochondrial ATPase did. It was concluded that oligomycin-sensitive and oligomycin-resistant ATPase may be associated with liver peroxisomes.  相似文献   

12.
Hsp90 is an ATP-dependent molecular chaperone that regulates key signaling proteins and thereby impacts cell growth and development. Chaperone cycle of Hsp90 is regulated by ATP binding and hydrolysis through its intrinsic ATPase activities, which is in turn modulated by interaction with its co-chaperones. Hsp90 ATPase activity varies in different organisms and is known to be increased in tumor cells. In this study we have quantitatively analyzed the impact of increasing Hsp90 ATPase activity on the activities of its clients through a virtual prototyping technology, which comprises a dynamic model of Hsp90 interaction with clients involved in proliferation pathways. Our studies highlight the importance of increased ATPase activity of Hsp90 in cancer cells as the key modulator for increased proliferation and survival. A tenfold increase in ATPase activity of Hsp90 often seen in cancer cells increases the levels of active client proteins such as Akt-1, Raf-1 and Cyclin D1 amongst others to about 12-, 8- and 186-folds respectively. Additionally we studied the effect of a competitive inhibitor of Hsp90 activity on the reduction in the client protein levels. Virtual prototyping experiments corroborate with findings that the drug has almost 10- to 100-fold higher affinity as indicated by a lower IC50 value (30–100 nM) in tumor cells with higher ATPase activity. The results also indicate a 15- to 25-fold higher efficacy of the inhibitor in reducing client levels in tumor cells. This analysis provides mechanistic insights into the links between increased Hsp90 ATPase activity, tumor phenotype and the hypersensitivity of tumor Hsp90 to inhibition by ATP analogs.  相似文献   

13.
SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG–SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg2+, mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes.  相似文献   

14.
This study shows that the natural inhibitor protein of mitochondrial H+-ATPase complex (IF1) inhibits, in addition to the catalytic activity, the proton conductivity of the complex. The inhibition of ATPase activity by IF1 is less effective in the purified F1 than in submitochondrial particles where F1 is bound to F0. No inhibition of H+ conductivity by F0 is observed in F1-depleted particles.  相似文献   

15.
The ATPase activity of Zajdela hepatoma and Yoshida sarcoma submitochondrial particles was several times lower than the enzyme activity in rat heart and rat liver submitochondrial particles. The content of F1-ATPase in the tumor mitochondria was found not to be very different from that in mitochondria of rat liver. Immunochemical determination of the amount of the natural ATPase inhibitor revealed that the tumor mitochondria contain 2-3-times more ATPase inhibitor than control mitochondria. It is concluded that the low ATPase activity of the tumor mitochondria results from the inhibition of the enzyme activity by the natural ATPase inhibitor.  相似文献   

16.
The effect of the natural ATPase inhibitor and octylguanidine on the ATPase activity of soluble oligomycin-insensitive mitochondrial F1 were compared. Both compounds induced a maximal inhibition of 60–80% in various preparations of F1 studied. The inhibition was of the uncompetitive type with respect to MgATP, and the action of the compounds was partially additive. The data suggest that octylguanidine reproduces the action of the natural ATPase inhibitor. Alkylammonium salts also affect the ATPase activity in a similar form. F1 bound to Sepharose-hexylammonium is largely inactive, whilst free hexylammonium at higher concentrations induces only a partial inhibition of the activity. This suggests that the degree of immobilization of F1 is related to the magnitude of inhibition of ATPase activity induced by alkyl cations. The binding of F1 to Sepharose-hexylammonium is prevented by high concentrations of Na+ or K+.  相似文献   

17.
1. The oligomycin-sensitive ATPase activity of submitochondrial particles of the glycerol-grown "petite-negative" yeast: Schizosaccharomyces pombe is markedly stimulated by incubation at 40 degrees C and by trypsin activations are treatment. Both increased in Triton-X 100 extracts of the submitochondrial particles. 2. A trypsin-sensitive inhibitory factor of mitochondrial ATPase with properties similar to that of beef heart has been extracted and purified from glycerol-grown and glucose-grown S. pombe wild type, from the nuclear pleiotropic respiratory-deficient mutant S. pombe M126 and from Saccharomyces cerevisiae. 3. ATPase activation by heat is more pronounced in submitochondrial particles isolated from glycerol-grown than from glucose-grown S. pombe. An activation of lower extent is observed in rat liver mitochondrial particles but is barely detectable in the "petite-positive" yeast: S. cerevisiae. No activation but inhibition by heat is observed in the pleitotropic respiratory-deficient nuclear mutant S. pombe M126. 4. The inhibition of S. pombe ATPase activity by low concentrations of dicyclohexylcarbodiimide dissapears at inhibitor concentrations above 25 muM. In Triton-extract of submitochondrial particles net stimulation of ATPase activity is observed at 100 muM dicyclohexylcarbodiimide. The pattern of stimulation of ATPase activity by dicyclohexylcarbodiimide in different genetic and physiological conditions parallels that produced by heat and trypsin. A similar mode of action is therefore proposed for the three agents: dissociation or inactivation of an ATPase inhibitory factor. 5. We conclude that "petite-positive" and "petite-negative" yeasts contain an ATPase inhibitor factor with properties similar to those of the bovine mitochondrial ATPase inhibitor. The expression of the ATPase inhibitor, measured by ATPase activation by heat, trypsin or high concentrations of dicyclohexylcarbodiimide, is sensitive to alterations of the hydrophobic membrane environment and dependent on both physiological state and genetic conditions of the yeast cells.  相似文献   

18.
Protein-lipid complexes were transferred directly from mitochondria and submitochondrial particles into hexane and ether. The protein-lipid residue left after solvent removal from these extracts was used to form liposomes which display low-temperature-resistant ATPase activity. Centrifugation experiments indicate that the ATPase activity is associated to the vesicles. Most of the F1-ATPases appear to be accessible to the external water phase of the liposomes. The ATPase activity of these particles was insensitive to dicyclohexylcarbodiimide and oligomycin. Incubation of these vesicles at room temperature activated (4--10-fold) the ATPase through a process that is partially sensitive to phenylmethylsulfonyl fluoride. The results with purified ATPase-inhibitor protein and (F1--ATPase)-inhibitor complex indicate that the activation process in the liposomes is due to the abolition of the inhibitory action of the inhibitor protein bound to a large fraction of the extracted ATPases. Liposomes prepared from hexane extracts obtained from submitochondrial particles having different levels of ATPase activity displayed an activation ratio which correlated with the number of ATPases that are inhibited by the inhibitor protein in the submitochondrial particles. The extraction of mitochondrial ATPase and its incorporation into liposomes followed by activity measurements may be used to judge the number of ATPases that in a given preparation contain the inhibitor protein in its inhibiting site.  相似文献   

19.
The lipid-free particulate preparations of the mitochondrial ATPase require phospholipid for activity and can be inhibited by oligomycin, as has been demonstrated previously. In this communication a steady state analysis of the activation of a particulate preparation of the ATPase by phospholipids and its subsequent inhibition by oligomycin has been carried out. The relative affinity of the ATPase for purified phospholipids has been determined by measuring the Km for activation (Ka) for several phospholipids. The Ka values varied from 30 to 100 mum. The Vmax in the presence of phosphatides varies from 0.29 to 1.11 mumol ATP hydrolyzed/min/mg of protein; no correlation is noted between the relative affinity of the enzyme for a phospholipid and the V max value. Higher V max values are noted with the more acidic phospholipids, however. Sodium dodecyl sulfate and monoolein also activate with Ka values of 25 and 800 mum, respectively. Diglycerides, however, do not activate. With all lipids the ATPase activity stimulated is oligomycin-sensitive. The Ki values for oligomycin range from 0.1 to 0.6 mum. Oligomycin is a competitive inhibitor with respect to all the phospholipids tested except phosphatidylethanolamine and phosphatidyglycerol. It is also competitive with respect to sodium dodecyl sulfate (k-i equals 0.94 mum). In reciprocal plots of activity versus ATP concentration, with and without oligomycin, an intercept consistent with either mixed or partial noncompetitive inhibition kinetics is noted. Comparable K-i values for oligomycin are obtained when calculated assuming either mixed or partial noncompetitive inhibition. The Km for ATP is the same in the unactivated and the lipid activated particulate ATPase; the value obtained is slightly lower than the Km for ATP in the solubilized, purified ATPase. Using a spectrophotometric assay the time required for activation with phospholipid and inhibition with oligomycin has also been determined. This investigation suggests the possibility that activation of the ATPase is due a position to interact with the water-soluble substrate. Consistent with the above suggestion is the supposition that the lipids do not necessarily confer inhibitor sensitivity to the ATPase, but rather allow an oligomycin-sensitive activity to be expressed.  相似文献   

20.
ATPase inhibitor protein, which blocks mitochondrial ATPase activity by forming an enzyme-inhibitor complex, was found to be synthesized as a larger precursor in a cell-free translation system directed by yeast mRNA. Other protein factors, which stabilize latent ATPase by binding to the enzyme-inhibitor complex, were also found to be formed as larger precursors. The precursor of ATPase inhibitor protein was transported into isolated yeast mitochondria and was cleaved to the mature peptide in the mitochondria. Impaired mitochondria lacking phosphorylation activity could not convert the precursor to the mature form. Neither antimycin A nor oligomycin alone exhibited a marked effect on the transport-processing of the precursor by intact mitochondria. However, when antimycin A was added with oligomycin, the transport-processing was markedly inhibited. The processing was also strongly inhibited by an uncoupler, carbonylcyanide p-trifluoro-methoxyphenyl hydrazone. The inhibition by the uncoupler was not relieved by ATP added externally. It is concluded that the transport-processing of precursor proteins requires intact mitochondria with a potential difference across the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号