共查询到20条相似文献,搜索用时 0 毫秒
1.
A comparative expression proteome analysis was carried out by analyzing differential expression patterns of pulse-labelled proteins on two-dimensional gels under standard conditions and during purine nucleotide starvation, followed by mass spectrometric identification of regulated proteins. Based upon the expression patterns, three stimulons could be identified in Lactococcus lactis subsp. cremoris. The Psu proteins (purine starvation up-regulated) had increased synthesis during purine depletion in a purine auxotroph. Among these proteins were enzymes of the purine biosynthesis pathways (PurE, PurS, PurM, PurL), and enzymes involved in the generation of C1 units (GlyA, Fhs). C1 units are primarily required for purine biosynthesis. Upon analysis of the nucleotide sequence preceding the structural genes for these proteins in the L. lactis IL1403 genome sequence showed that all contained PurBox-Pribnov box structures resembling the PurR activated promoters for the purDEK and purCSQLF operons. Most, and possibly all members of the Psu stimulon are thus members of the PurR regulon. Five Psu proteins could not be identified. The second stimulon, the Psd stimulon (purine starvation decreased), whose members are down-regulated during purine depletion, contained proteins related to protein synthesis (PpsB, EF-TS, trigger factor), or to GTPases (FtsZ, EF-TS); or are involved in energy metabolism (GapB, CcpA). No common regulatory elements could be found for members of this stimulon. Two Psd proteins escaped identification. The last, Dcu (decoynine up-regulated), stimulon contained proteins whose synthesis escaped the severe general depression during inhibition of the GMP synthetase by decoynine. This regulon was comprised of mostly glycolytic enzymes (fructose bisphosphate aldolase, enolase, pyruvate kinase) and translation elongation factors (GTPases: EF-TU, EF-G). Two Dcu proteins could not be identified. Out of 28 proteins subjected to mass spectrometry, 19 could be readily identified despite the fact that only the genome sequence of a strain of L. lactis subsp. lactis was available. The two subspecies share about 85% sequence identity, comparable to the genetic distance between Escherichia coli and Salmonella typhimurium. A success rate of 68% indicates that it may be feasible to perform proteomics based upon genomic sequences of relatives outside the genus. 相似文献
2.
The catabolic control protein CcpA is the highly conserved regulator of carbon metabolism in Gram-positive bacteria. We recently showed that Lactococcus lactis, a fermenting bacterium in the family of Streptococcaceae, is capable of respiration late in growth when haem is added to aerated cultures. As the start of respiration coincides with glucose depletion from the medium, we hypothesized that CcpA is involved in this metabolic switch and investigated its role in lactococcal growth under aeration and respiration conditions. Compared with modest changes observed in fermentation growth, inactivation of ccpA shifts metabolism to mixed acid fermentation under aeration conditions. This shift is due to a modification of the redox balance via derepression of NADH oxidase, which eliminates oxygen and decreases the NADH pool. CcpA also plays a decisive role in respiration metabolism. Haem addition to lag phase ccpA cells results in growth arrest and cell mortality. Toxicity is due to oxidative stress provoked by precocious haem uptake. We identify the repressor of the haem transport system and show that it is a target of CcpA activation. We propose that CcpA-mediated repression of haem uptake is a means of preventing oxidative damage at the start of exponential growth. CcpA thus appears to govern a regulatory network that coordinates oxygen, iron and carbon metabolism. 相似文献
3.
To cope with medium acidity, Lactococcus lactis has evolved a number of inducible mechanisms commonly referred as acid stress response. To better understand the molecular basis of this response, several mutants constitutively tolerant to acidity were previously obtained by insertional random mutagenesis of L. lactis MG1363. Mutants in which the GMP synthase gene (i.e. guaA), the (p)ppGpp synthase gene (i.e. relA*) or the high affinity phosphate transport system (i.e. pstS) are inactivated are further characterized in this study. 2-DE was performed and showed that 42, 26, and 35 protein spots are positively deregulated in the guaA, relA*, and pstS mutants, respectively, as compared to the wild-type strain. Most of these proteins were identified by MS. Proteomes comparison of the mutants guaA, relA*, and pstS as well as the acid adaptation proteome of the wild-type strain revealed (i) the presence of numerous overlaps and (ii) that only five proteins were overexpressed in the four conditions, suggesting that these proteins play a crucial role in the constitutive acid stress tolerance of the mutants and in the acid tolerance response of the wild-type strain. 相似文献
4.
Barbara Kiefer-Partsch Wilhelm Bockelmann Arnold Geis Michael Teuber 《Applied microbiology and biotechnology》1989,31(1):75-78
Summary The -casein specific cell wall proteolytic system of Lactococcus lactis subsp. cremoris P8-2-47 contains a metal-independent X-prolyl-dipeptidyl-aminopeptidase. Suitable substrates for its assay are Gly-Pro-nitroanilide and Ala-Pronitroanilide. It is suggested that the function of the enzyme is to cleave the proline-rich sequences of -casein, as shown by the degradation of -casomorphin. It is a serine proteinase with a monomer molecular mass of about 90 000 daltons, a temperature optimum of 45°–50°C, and a pH optimum of about 7. 相似文献
5.
When modifying the metabolism of living organisms with the aim of achieving biosynthesis of useful compounds, it is essential to ensure that it is possible to achieve overall redox balance. We propose a generalized strategy for this, based on fine-tuning of respiration. The strategy was applied on metabolically engineered Lactococcus lactis strains to optimize the production of acetoin and (R,R)-2,3-butanediol (R-BDO). In the absence of an external electron acceptor, a surplus of two NADH per acetoin molecule is produced. We found that a fully activated respiration was able to efficiently regenerate NAD+, and a high titer of 371 mM (32 g/L) of acetoin was obtained with a yield of 82% of the theoretical maximum. Subsequently, we extended the metabolic pathway from acetoin to R-BDO by introducing the butanediol dehydrogenase gene from Bacillus subtilis. Since one mole of NADH is consumed when acetoin is converted into R-BDO per mole, only the excess of NADH needs to be oxidized via respiration. Either by fine-tuning the respiration capacity or by using a dual-phase fermentation approach involving a switch from fully respiratory to non-respiratory conditions, we obtained 361 mM (32 g/L) R-BDO with a yield of 81% or 365 mM (33 g/L) with a yield of 82%, respectively. These results demonstrate the great potential in using finely-tuned respiration machineries for bio-production. 相似文献
6.
《Molecular & cellular proteomics : MCP》2019,18(4):704-714
Highlights
- •The proteomes of L. lactis MG1363 and phage p2 at different stages of infection were characterized.
- •16% (226/1412) of the bacterial proteins detected were unique to infected cultures.
- •A targeted approach using synthetic peptides improved the coverage of phage p2 proteome.
- •By means of proteogenomics, we uncovered a conserved phage protein coded by a previously unannotated gene.
- •Deletion of the bacterial gene llmg_0219 (unknown function) impedes phage p2 infection.
7.
Edmund R. S. Kunji Gang Fang C. Margot Jeronimus-Stratingh ries P. Bruins Bert Poolman & Wil N. Konings 《Molecular microbiology》1998,27(6):1107-1118
Amino acid auxotrophous bacteria such as Lactococcus lactis use proteins as a source of amino acids. For this process, they possess a complex proteolytic system to degrade the protein(s) and to transport the degradation products into the cell. We have been able to dissect the various steps of the pathway by deleting one or more genes encoding key enzymes/components of the system and using mass spectrometry to analyse the complex peptide mixtures. This approach revealed in detail how L . lactis liberates the required amino acids from β-casein, the major component of the lactococcal diet. Mutants containing the extracellular proteinase PrtP, but lacking the oligopeptide transport system Opp and the autolysin AcmA, were used to determine the proteinase specificity in vivo . To identify the substrates of Opp present in the casein hydrolysate, the PrtP-generated peptide pool was offered to mutants lacking the proteinase, but containing Opp, and the disappearance of peptides from the medium as well as the intracellular accumulation of amino acids and peptides was monitored in peptidase-proficient and fivefold peptidase-deficient genetic backgrounds. The results are unambiguous and firmly establish that (i) the carboxyl-terminal end of β-casein is degraded preferentially despite the broad specificity of the proteinase; (ii) peptides smaller than five residues are not formed in vivo ; (iii) use of oligopeptides of 5–10 residues becomes only possible after uptake via Opp; (iv) only a few (10–14) of the peptides generated by PrtP are actually used, even though the system facilitates the transport of oligopeptides up to at least 10 residues. The technology described here allows us to monitor the fate of individual peptides in complex mixtures and is applicable to other proteolytic systems. 相似文献
8.
The success rate of introducing new functions into a living species is still rather unsatisfactory. Much of this is due to the very essence of the living state, i.e. its robustness towards perturbations. Living cells are bound to notice that metabolic engineering is being effected, through changes in metabolite concentrations. In this study, we asked whether one could engage in such engineering without changing metabolite concentrations. We have illustrated that, in silico, one can do so in principle. We have done this for the case of substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system, in an L. lactis network, this engineering is 'silent' in terms of metabolite concentrations and almost all fluxes. 相似文献
9.
Lactococcus lactis subsp. lactis biovar. diacetylactis DPC721 is a spontaneous bacteriophage insensitive mutant of strain DPC220, isolated after challenge with an industrial bacteriophage, phi D1. Plasmid analysis demonstrated that the bacteriophage insensitivity was associated with the absence of two native DPC220 plasmids (pAH82 and pAH33), and the presence of a novel plasmid (pAH90) in DPC721. The plasmids were transferred by conjugative mobilization to a plasmid free background where it was confirmed by restriction mapping that pAH90 is a co-integrate formed by the precise recombination of pAH82 and pAH33. The resistance phenotype encoded by pAH90 was also active against two bacteriophage homologous for the plasmid-free strain. Plasmid pAH90 was shown to encode at least two independent resistance mechanisms, including an adsorption-inhibition mechanism and a restriction and modification system. The adsorption-inhibition mechanism encoded by the co-integrate plasmid was specific for one of the phage used in this study. 相似文献
10.
11.
Xinxi Gu Chen Li Yi Cai Hui Dong Wentao Xu Hongtao Tian Jianguo Yang 《Annals of microbiology》2013,63(3):951-956
Lactococcus lactis—a food-grade nonpathogenic lactic acid bacterium—is used widely in the food industry. In this report, we describe an approach to construct deficient strains in L. lactis utilizing the λ-Red recombination system. Three kinds of recombinant proteins, λ exonuclease, β protein and γ protein, were induced by l-arabinose in L. lactis MG1363 harboring the plasmid pKD46. A chloramphenicol-resistant cassette was amplified from pGj103 containing homology arms of 50 nt to the thyA gene. The PCR-generated DNA fragment was then electroporated into L. lactis MG1363, which expressed the recombination proteins. ThyA-null strains resistant to chloramphenicol were obtained and their growth characteristics were analyzed in relation to thymidine requirement. The results revealed that the thyA gene in L. lactis MG1363 was successfully knocked out. This is the first time that the Red system has been used in a Gram-positive bacterium, and use of the techniques presented here should prompt rapid and efficient mutagenesis or modification of L. Lactis chromosomal genes. 相似文献
12.
S.C. Stringer C.E.R. Dodd M.R.A. Morgan W.M. Waltes 《Journal of applied microbiology》1995,78(4):341-348
S.C. STRINGER, C.E.R. DODD, M.R.A. MORGAN AND W.M. WAITES. 1995. Antibody-linked probes were used to locate nisin in a fermented meat system. Free nisin or nisin bound to susceptible cells or food components was not detected. Colonies of nisin-producing Lactococcus lactis were stained at all times during growth. The position of nisin-producing L. lactis colonies was noted and compared with the location of spoilage organisms or the distribution of areas with a fermented meat appearance. No relationship between the distribution of starter culture and the location of spoilage organisms or areas of fermentation was observed. In addition to the presence of L. lactis , a rapidly fermentable sugar was also required to obtain a fermented appearance and to reduce the levels of spoilage organisms. 相似文献
13.
14.
Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. 总被引:12,自引:10,他引:2 下载免费PDF全文
The genes responsible for bacteriocin production and immunity in Lactococcus lactis subsp. lactis biovar diacetylactis WM4 were localized and characterized by DNA restriction fragment deletion, subcloning, and nucleotide sequence analysis. The nucleotide sequence of a 5.6-kb AvaII restriction fragment revealed a cluster with five complete open reading frames (ORFs) in the same orientation. DNA and protein homology analyses, combined with deletion and Tn5 insertion mutagenesis, implicated four of the ORFs in the production of and immunity to lactococcin A. The last two ORFs in the cluster were the lactococcin A structural and immunity genes, lcnA and lciA. The two ORFs immediately upstream of lcnA and lciA were designated lcnC and lcnD, and the proteins that they encoded showed similarities to proteins of signal sequence-independent secretion systems. lcnC encodes a protein of 716 amino acids that could belong to the HlyB family of ATP-dependent membrane translocators. LcnC contains an ATP binding domain in a conserved C-terminal stretch of approximately 200 amino acids and three putative hydrophobic segments in the N terminus. The lcnD product, LcnD, of 474 amino acids, is essential for lactococcin A expression and shows structural similarities to HlyD and its homologs. On the basis of these results, a secretion apparatus that is essential for the full expression of active lactococcin A is postulated. 相似文献
15.
McGrath S Seegers JF Fitzgerald GF van Sinderen D 《Applied and environmental microbiology》1999,65(5):1891-1899
A specific fragment of the genome of Tuc2009, a temperate lactococcal bacteriophage, was shown to contain several open reading frames, whose deduced protein products exhibited similarities to proteins known to be involved in DNA replication and modification. In this way, a putative single-stranded binding protein, replisome organizer protein, topoisomerase I, and a methylase were identified. When the genetic information coding for the putative replisome organizer protein of Tuc2009, Rep2009, was supplied on a high-copy-number plasmid vector, it was shown to confer a phage-encoded resistance (Per) phenotype on its lactococcal host UC509.9. The presence of this recombinant plasmid was shown to cause a marked reduction in Tuc2009 DNA replication, suggesting that the observed phage resistance was due to titration of a factor, or factors, required for Tuc2009 DNA replication. Further experiments delineated the phage resistance-conferring region to a 160-bp fragment rich in direct repeats. Gel retardation experiments, which indicated a protein-DNA interaction between this 160-bp fragment and the Rep2009 protein, were performed. UC509.9 strains harboring plasmids with randomly mutated versions of this fragment were shown to display a variable phage resistance phenotype, depending on the position of the mutations. 相似文献
16.
Campo N Dias MJ Daveran-Mingot ML Ritzenthaler P Le Bourgeois P 《Antonie van Leeuwenhoek》2002,82(1-4):123-132
Comparative genome analyses contribute significantly to our understanding of bacterial evolution and indicate that bacterial genomes are constantly evolving structures. The gene content and organisation of chromosomes of lactic acid bacteria probably result from a strong evolutionary pressure toward optimal growth of these microorganisms in milk. The genome plasticity of Lactococcus lactis was evaluated at inter- and intrasubspecies levels by different experimental approaches. Comparative genomics showed that the lactococcal genomes are not highly plastic although large rearrangements (a.o. deletions, inversions) can occur. Experimental genome shuffling using a new genetic strategy based on the Cre-loxP recombination system revealed that two domains are under strong constraints acting to maintain the original chromosome organisation: a large region around the replication origin, and a smaller one around the putative terminus of replication. Future knowledge of the rules leading to an optimal genome organisation could facilitate the definition of new strategies for industrial strain improvement. 相似文献
17.
Abstract Lactic acid bacteria are of major economic importance, as they occupy a key position in the manufacture of fermented foods. A considerable body of research is currently being devoted to the development of lactic acid bacterial strains with improved characteristics, that may be used to make fermentations pass of more efficiently, or to make new applications possible. Therefore, and because the lactococci are designated 'GRAS' organisms ('generally recognized as safe') which may be used for safe production of foreign proteins, detailed knowledge of homologous and heterologous gene expression in these organisms is desired. An overview is given of our current knowledge concerning gene expression in Lactococcus lactis . A general picture of gene expression signals in L. lactis emerges that shows considerable similarity to those observed in Escherichia coli and Bacillus subtilis . This feature allowed the expression of a number of L. lactis -derived genes in the latter bacterial species. Several studies have indicated, however, that in spite of the similarities, the expression signals from E. coli, B. subtilis and L. lactis are not equally efficient in these three organisms. 相似文献
18.
Lysozyme expression in Lactococcus lactis 总被引:1,自引:0,他引:1
Maarten van de Guchte Fimme Jan van der Wal Jan Kok Gerard Venema 《Applied microbiology and biotechnology》1992,37(2):216-224
Summary Three lysozyme-encoding genes, one of eukaryotic and two of prokaryotic origin, were expressed in Lactococcus lactis subsp. lactis. Hen egg white lysozyme (HEL) could be detected in L. lactis lysates by Western blotting. No lysozyme activity was observed, however, presumably because of the absence of correctly formed disulphide bonds in the L. lactis product. The functionally related lysozymes of the E. coli bacteriophages T4 and were produced as biologically active proteins in L. lactis. In both cases, the highest expression levels were obtained using configurations in which the bacteriophage lysozyme genes had been translationally coupled to a short open reading frame of lactococcal origin. Both enzymes, like HEL, may prevent the growth of food-spoilage bacteria. 相似文献
19.
Campo N Daveran-Mingot ML Leenhouts K Ritzenthaler P Le Bourgeois P 《Applied and environmental microbiology》2002,68(5):2359-2367
We have used a new genetic strategy based on the Cre-loxP recombination system to generate large chromosomal rearrangements in Lactococcus lactis. Two loxP sites were sequentially integrated in inverse order into the chromosome either at random locations by transposition or at fixed points by homologous recombination. The recombination between the two chromosomal loxP sites was highly efficient (approximately 1 x 10(-1)/cell) when the Cre recombinase was provided in trans, and parental- or inverted-type chromosomal structures were isolated after removal of the Cre recombinase. The usefulness of this approach was demonstrated by creating three large inversions of 500, 1,115, and 1,160 kb in size that modified the lactococcal genome organization to different extents. The Cre-loxP recombination system described can potentially be used for other gram-positive bacteria without further modification. 相似文献