首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
One family within the Euascomycetes (Ascomycota), the lichen-forming Physciaceae, is particularly rich in nuclear ribosomal [r]DNA group I introns. We used phylogenetic analyses of group I introns and lichen-fungal host cells to address four questions about group I intron evolution in lichens, and generally in all eukaryotes: 1) Is intron spread in the lichens associated with the intimate association of the fungal and photosynthetic cells that make up the lichen thallus? 2) Are the multiple group I introns in the lichen-fungi of independent origins, or have existing introns spread into novel sites in the rDNA? 3) If introns have moved to novel sites, then does the exon context of these sites provide insights into the mechanism of intron spread? and 4) What is the pattern of intron loss in the small subunit rDNA gene of lichen-fungi? Our analyses show that group I introns in the lichen-fungi and in the lichen-algae (and lichenized cyanobacteria) do not share a close evolutionary relationship, suggesting that these introns do not move between the symbionts. Many group I introns appear to have originated in the common ancestor of the Lecanorales, whereas others have spread within this lineage (particularly in the Physciaceae) putatively through reverse-splicing into novel rRNA sites. We suggest that the evolutionary history of most lichen-fungal group I introns is characterized by rare gains followed by extensive losses in descendants, resulting in a sporadic intron distribution. Detailed phylogenetic analyses of the introns and host cells are required, therefore, to distinguish this scenario from the alternative hypothesis of widespread and independent intron gains in the different lichen-fungal lineages.  相似文献   

2.
Group I introns are widespread in eukaryotic organelles and nuclear- encoded ribosomal DNAs (rDNAs). The green algae are particularly rich in rDNA group I introns. To better understand the origins and phylogenetic relationships of green algal nuclear-encoded small subunit rDNA group I introns, a secondary structure-based alignment was constructed with available intron sequences and 11 new subgroup ICI and three new subgroup IB3 intron sequences determined from members of the Trebouxiophyceae (common phycobiont components of lichen) and the Ulvophyceae. Phylogenetic analyses using a weighted maximum-parsimony method showed that most group I introns form distinct lineages defined by insertion sites within the SSU rDNA. The comparison of topologies defining the phylogenetic relationships of 12 members of the 1512 group I intron insertion site lineage (position relative to the E. coli SSU rDNA coding region) with that of the host cells (i.e., SSU rDNAs) that contain these introns provided insights into the possible origin, stability, loss, and lateral transfer of ICI group I introns. The phylogenetic data were consistent with a viral origin of the 1512 group I intron in the green algae. This intron appears to have originated, minimally, within the SSU rDNA of the common ancestor of the trebouxiophytes and has subsequently been vertically inherited within this algal lineage with loss of the intron in some taxa. The phylogenetic analyses also suggested that the 1512 intron was laterally transferred among later-diverging trebouxiophytes; these algal taxa may have coexisted in a developing lichen thallus, thus facilitating cell- to-cell contact and the lateral transfer. Comparison of available group I intron sequences from the nuclear-encoded SSU rDNA of phycobiont and mycobiont components of lichens demonstrated that these sequences have independent origins and are not the result of lateral transfer from one component to the other.   相似文献   

3.
The nucleotide sequence of the 18S rDNA coding gene in the ascomycetes parasitic fungus Isaria japonica contains a group I intron with a length of 379 nucleotides. The identification of the DNA sequence as a group I intron is based on its sequence homology to other fungal group I introns. Its group I intron contained the highly conserved sequence elements P, Q, R, and S found in other group I introns. Surprisingly, the intron sequence of I. japonica is more similar to that of Ustilago maydis than to the one found in Sclerotinia sclerotiorum. This is in contrast to the sequence identity found on the neighboring rDNA. This is an interesting finding and suggests a horizontal transfer of group I intron sequences. Received: 19 September 1997 / Accepted: 10 September 1998  相似文献   

4.
The origins of fungal group I introns within nuclear small-subunit (nSSU) rDNA are enigmatic. This is partly because they have never been reported in basal fungal phyla (Zygomycota and Chytridiomycota), which are hypothesized to be ancestral to derived phyla (Ascomycota and Basidiomycota). Here we report group I introns from the nSSU rDNA of two zygomycete fungi, Zoophagus insidians (Zoopagales) and Coemansia mojavensis (Kickxellales). Secondary structure analyses predicted that both introns belong to the IC1 subgroup and that they are distantly related to each other, which is also suggested by different insertion sites. Molecular phylogenetic analyses indicated that the IC1 intron of Z. insidians is closely related to the IC1 intron inserted in the LSU rDNA of the basidiomycete fungus Clavicorona taxophila, which strongly suggests interphylum horizontal transfer. The IC1 intron of C. mojavensis has a low phylogenetic affinity to other fungal IC1 introns inserted into site 943 of nSSU rDNA (relative to E. coli 16S rDNA). It is noteworthy that this intron contains a putative ORF containing a His–Cys box motif in the antisense strand, a hallmark for nuclear-encoded homing endonucleases. Overall, molecular phylogenetic analyses do not support the placement of these two introns in basal fungal IC1 intron lineages. This result leads to the suggestion that fungal IC1 introns might have invaded or been transferred laterally after the divergence of the four major fungal phyla. Received: 8 February 2001 / Accepted: 1 November 2001  相似文献   

5.
Mitochondria are descendants of the endosymbiotic α-proteobacterium most likely engulfed by the ancestral eukaryotic cells, and the proto-mitochondrial genome should have been severely streamlined in terms of both genome size and gene repertoire. In addition, mitochondrial (mt) sequence data indicated that frequent intron gain/loss events contributed to shaping the modern mt genome organizations, resulting in the homologous introns being shared between two distantly related mt genomes. Unfortunately, the bulk of mt sequence data currently available are of phylogenetically restricted lineages, i.e., metazoans, fungi, and land plants, and are insufficient to elucidate the entire picture of intron evolution in mt genomes. In this work, we sequenced a 12 kbp-fragment of the mt genome of the katablepharid Leucocryptos marina. Among nine protein-coding genes included in the mt genome fragment, the genes encoding cytochrome b and cytochrome c oxidase subunit I (cob and cox1) were interrupted by group I introns. We further identified that the cob and cox1 introns host open reading frames for homing endonucleases (HEs) belonging to distantly related superfamilies. Phylogenetic analyses recovered an affinity between the HE in the Leucocryptos cob intron and two green algal HEs, and that between the HE in the Leucocryptos cox1 intron and a fungal HE, suggesting that the Leucocryptos cob and cox1 introns possess distinct evolutionary origins. Although the current intron (and intronic HE) data are insufficient to infer how the homologous introns were distributed to distantly related mt genomes, the results presented here successfully expanded the evolutionary dynamism of group I introns in mt genomes.  相似文献   

6.
Studies of the distribution of the three group I introns (intron A, intron T, and intron AT) in the 26S rDNA of Gaeumannomyces graminis had suggested that they were transferred to a common ancestor of G. graminis var. avenae and var. tritici after it had branched off from var. graminis. Intron AT and intron A exhibited vertical inheritance and coevolved in concert with their hosts. Intron loss could occur after its acquisition. Loss of any one of the three introns could occur in var. tritici whereas only loss of intron T had been found in the majority of var. avenae isolates. The existence of isolates of var. tritici and var. avenae with three introns suggested that intron loss could be reversed by intron acquisition and that the whole process is a dynamic one. This process of intron acquisition and intron loss reached different equilibrium points for different varieties and subgroups, which explained the irregular distribution of these introns in G. graminis. Each of the three group I introns was more closely related to other intron sequences that share the same insertion point in the 26S rDNA than to each other. These introns in distantly related organisms appeared to have a common ancestry. This system had provided a good model for studies on both the lateral transfer and common ancestry of group I introns in the 26S rRNA genes. Received: 17 May 1996 / Accepted: 14 January 1997  相似文献   

7.
The mtDNA rnl-U7 region has been examined for the presence of introns in selected species of the genus Ceratocystis. Comparative sequence analysis identified group I and group II introns encoding single and double motif LAGLIDADG open reading frames (ORFs) at the following positions L1671, L1787, and L1923. In addition downstream of the rnl-U7 region group I introns were detected at positions L1971 and L2231, and a group II intron at L2059. A GIY-YIG type ORF was located within one mL1923 LAGLIDADG type ORF and a degenerated GIY-YIG ORF fused to a nad2 gene fragment was found in association with the mL1971 group I intron. The diversity of composite elements that appear to be sporadically distributed among closely related species of Ceratocystis illustrates the potential for homing endonucleases and their associated introns to invade new sites. Phylogenetic analysis showed that single motif LADGLIDADG ORFs related to the mL1923 ORFs have invaded the L1787 group II intron and the L1671 group I intron. Phylogenetic analysis of intron encoded single and double motif LAGLIDADG ORFs also showed that these ORFs transferred four times from group I into group II B1 type introns.  相似文献   

8.
Inhibition of In Vitro Splicing of a Group I Intron of Pneumocystis carinii   总被引:4,自引:0,他引:4  
Unlike its mammalian hosts, the opportunistic fungal pathogen Pneumocystis carinii harbors group I self-splicing introns in its chromosomal genes encoding rRNA. This difference between pathogen and host suggests that intron splicing is a promising target for chemotherapy. We have found that intron splicing in vitro is inhibited by the anti- Pneumocystis agent pentamidine and by a series of pentamidine analogues, as well as by some aminoglycosides, tetracycline, L-arginine and ethidium bromide. Further studies will be needed to determine if this is the mechanism of action of pentamidine against P. carinii .  相似文献   

9.
The ascomycetous fungus Cryptendoxyla hypophloia contains an insertion of 433 base pairs in the genes encoding nuclear small subunit ribosomal RNA. Secondary structure analyses of the insert reveal characteristics indicative of a Group I intron, including elements P, Q, R, and S; however, the sequences of these conserved regions deviate significantly from recognized consensus sequences for Group I introns. Principal-components analysis, based on 79 nucleotide positions from the conserved core sequences of 93 Group I introns, identified 17 introns similar to that of C. hypophloia. This grouping, which includes inserts from phylogenetically diverse organisms, cannot readily be classified in any previously recognized major group of Group I introns. We propose the creation of a new group, IE, to accommodate these sequences, and discuss the evolutionary relationships between group IE and other major groups of Group I introns. Received: 11 January 1998 / Accepted: 12 October 1998  相似文献   

10.
Mobile group I introns sometimes contain an open reading frame (ORF) possibly encoding a site-specific DNA endonuclease. However, previous phylogenetic studies have not clearly deduced the evolutionary roles of the group I intron ORFs. In this paper, we examined the phylogeny of group IA2 introns inserted in the position identical to that of the chloroplast-encoded rbcL coding region (rbcL-462 introns) and their ORFs from 13 strains of five genera (Volvox, Pleodorina, Volvulina, Astrephomene, and Gonium) of the colonial Volvocales (Chlorophyceae) and a related unicellular green alga, Vitreochlamys. The rbcL-462 introns contained an intact or degenerate ORF of various sizes except for the Gonium multicoccum rbcL-462 intron. Partial amino acid sequences of some rbcL-462 intron ORFs exhibited possible homology to the endo/excinuclease amino acid terminal domain. The distribution of the rbcL-462 introns is sporadic in the phylogenetic trees of the colonial Volvocales based on the five chloroplast exon sequences (6021 bp). Phylogenetic analyses of the conserved intron sequences resolved that the G. multicoccum rbcL-462 intron had a phylogenetic position separate from those of other colonial volvocalean rbcL-462 introns, indicating the recent horizontal transmission of the intron in the G. multicoccum lineage. However, the combined data set from conserved intron sequences and ORFs from most of the rbcL-462 introns resolved robust phylogenetic relationships of the introns that were consistent with those of the host organisms. Therefore, most of the extant rbcL-462 introns may have been vertically inherited from the common ancestor of their host organisms, whereas such introns may have been lost in other lineages during evolution of the colonial Volvocales. In addition, apparently higher synonymous substitutions than nonsynonymous substitutions in the rbcL-462 intron ORFs indicated that the ORFs might evolve under functional constraint, which could result in homing of the rbcL-462 intron in cases of spontaneous intron loss. On the other hand, the presence of intact to largely degenerate ORFs of the rbcL-462 introns within the three isolates of Gonium viridistellatum and the rare occurrence of the ORF-lacking rbcL-462 intron suggested that the ORFs might degenerate to result in the spontaneous intron loss during a very short evolutionary time following the loss of the ORF function. Thus, the sporadic distribution of the rbcL-462 introns within the colonial Volvocales can be largely explained by an equilibrium between maintenance of the introns by the intron ORF and spontaneous loss of introns when the introns do not have a functional ORF.  相似文献   

11.
Based on the findings that plastids and cyanobacteria have similar group I introns inserted into tRNAUAALeu genes, these introns have been suggested to be immobile and of ancient origin. In contrast, recent evidence suggests lateral transfer of cyanobacterial group I introns located in tRNAUAALeu genes. In light of these new findings, we have readdressed the evolution and lateral transfer of tRNAUAALeu group I introns in cyanobacteral radiation. We determined the presence of introns in 38 different strains, representing the major cyanobacterial lineages, and characterized the introns in 22 of the strains. Notably, two of these strains have two tRNAUAALeu genes, with each of these genes interrupted by introns, while three of the strains have both interrupted and uninterrupted genes. Two evolutionary distinct clusters of tRNA genes, with the genes interrupted by introns belonging to two distinct intron clusters, were identified. We also compared 16S rDNA and intron evolution for both closely and distantly related strains. The distribution of the introns in the clustered groups, as defined from 16S rDNA analysis, indicates relatively recent gain and/or loss of the introns in some of these lineages. The comparative analysis also suggests differences in the phylogenetic trees for 16S rDNA and the tRNAUAALeu group I introns. Taken together, our results show that the evolution of the intron is considerably more complex than previous studies found to be the case. We discuss, based on our results, evolutionary models involving lateral intron transfer and models involving differential loss of the intron.  相似文献   

12.
Group I introns are genetic insertion elements that invade host genomes in a wide range of organisms. In metazoans, however, group I introns are extremely rare, so far only identified within mitogenomes of hexacorals and some sponges. We sequenced the complete mitogenome of the cold-water scleractinian coral Lophelia pertusa, the dominating deep sea reef-building coral species in the North Atlantic Ocean. The mitogenome (16,150 bp) has the same gene content but organized in a unique gene order compared to that of other known scleractinian corals. A complex group I intron (6460 bp) inserted in the ND5 gene (position 717) was found to host seven essential mitochondrial protein genes and one ribosomal RNA gene. Phylogenetic analysis supports a vertical inheritance pattern of the ND5-717 intron among hexacoral mitogenomes with no examples of intron loss. Structural assessments of the Lophelia intron revealed an unusual organization that lacks the universally conserved ωG at the 3′ end, as well as a highly compact RNA core structure with overlapping ribozyme and protein coding capacities. Based on phylogenetic and structural analyses we reconstructed the evolutionary history of ND5-717, from its ancestral protist origin, through intron loss in some early metazoan lineages, and into a compulsory feature with functional implications in hexacorals.  相似文献   

13.
We report a self-splicing intron in bacteriophage SPO1, whose host is the gram-positive Bacillus subtilis. The intron contains all the conserved features of primary sequence and secondary structure previously described for the group IA introns of eukaryotic organelles and the gram-negative bacteriophage T4. The SPO1 intron contains an open reading frame of 522 nucleotides. As in the T4 introns, this open reading frame begins in a region that is looped out of the secondary structure, but ends in a highly conserved region of the intron core. The exons encode SPO1 DNA polymerase, which is highly similar to E. coli DNA polymerase I. The demonstration of self-splicing introns in viruses of both gram-positive and gram-negative eubacteria lends further evidence for their early origin in evolution.  相似文献   

14.
Group I introns are autonomous genetic elements that can catalyze their own excision from pre-RNA. Understanding how group I introns move in nuclear ribosomal (r)DNA remains an important question in evolutionary biology. Two models are invoked to explain group I intron movement. The first is termed homing and results from the action of an intron-encoded homing endonuclease that recognizes and cleaves an intronless allele at or near the intron insertion site. Alternatively, introns can be inserted into RNA through reverse splicing. Here, we present the sequences of two large group I introns from fungal nuclear rDNA, which both encode putative full-length homing endonuclease genes (HEGs). Five remnant HEGs in different fungal species are also reported. This brings the total number of known nuclear HEGs from 15 to 22. We determined the phylogeny of all known nuclear HEGs and their associated introns. We found evidence for intron-independent HEG invasion into both homologous and heterologous introns in often distantly related lineages, as well as the "switching" of HEGs between different intron peripheral loops and between sense and antisense strands of intron DNA. These results suggest that nuclear HEGs are frequently mobilized. HEG invasion appears, however, to be limited to existing introns in the same or neighboring sites. To study the intron-HEG relationship in more detail, the S943 group I intron in fungal small-subunit rDNA was used as a model system. The S943 HEG is shown to be widely distributed as functional, inactivated, or remnant ORFs in S943 introns.  相似文献   

15.
Group II introns are ribozymes that catalyze a splicing reaction with the same chemical steps as spliceosome-mediated splicing. Many group II introns have lost the capacity to self-splice while acquiring compensatory interactions with host-derived protein cofactors. Degenerate group II introns are particularly abundant in the organellar genomes of plants, where their requirement for nuclear-encoded splicing factors provides a means for the integration of nuclear and organellar functions. We present a biochemical analysis of the interactions between a nuclear-encoded group II splicing factor and its chloroplast intron target. The maize (Zea mays) protein Chloroplast RNA Splicing 1 (CRS1) is required specifically for the splicing of the group II intron in the chloroplast atpF gene and belongs to a plant-specific protein family defined by a recently recognized RNA binding domain, the CRM domain. We show that CRS1's specificity for the atpF intron in vivo can be explained by CRS1's intrinsic RNA binding properties. CRS1 binds in vitro with high affinity and specificity to atpF intron RNA and does so through the recognition of elements in intron domains I and IV. These binding sites are not conserved in other group II introns, accounting for CRS1's intron specificity. In the absence of CRS1, the atpF intron has little uniform tertiary structure even at elevated [Mg2+]. CRS1 binding reorganizes the RNA, such that intron elements expected to be at the catalytic core become less accessible to solvent. We conclude that CRS1 promotes the folding of its group II intron target through tight and specific interactions with two peripheral intron segments.  相似文献   

16.
Small molecule targeting of self-splicing RNAs like group I and II introns has been limited in part by the lack of a universal high-throughput screening platform for studies of splicing inhibition and kinetics. Here, we present the development of a molecular beacon assay for monitoring the accumulation of spliced exons during RNA splicing reactions. In this case, we applied it to the autocatalyzed reaction of the H.c.LSU group II intron found in the mitochondria of the pathogenic dimorphic fungus Histoplasma capsulatum. We find that a molecular beacon with the loop length of 18 nucleotides selectively recognizes ligated exons formed during self-splicing and exhibits high fluorescent signal upon binding of its target. We demonstrate that the fluorescent assay using molecular beacons can be successfully applied to kinetic characterization of the splicing reaction and determination of inhibition constants for small molecules. The results presented herein offer support for a molecular beacon approach to identifying small molecule inhibitors of intron splicing.  相似文献   

17.
Group I and group II introns are different catalytic self-splicing and mobile RNA elements that contribute to genome dynamics. In this study, we have analyzed their distribution and evolution in 29 sequenced genomes from the Bacillus cereus group of bacteria. Introns were of different structural classes and evolutionary origins, and a large number of nearly identical elements are shared between multiple strains of different sources, suggesting recent lateral transfers and/or that introns are under a strong selection pressure. Altogether, 73 group I introns were identified, inserted in essential genes from the chromosome or newly described prophages, including the first elements found within phages in bacterial plasmids. Notably, bacteriophages are an important source for spreading group I introns between strains. Furthermore, 77 group II introns were found within a diverse set of chromosomal and plasmidic genes. Unusual findings include elements located within conserved DNA metabolism and repair genes and one intron inserted within a novel retroelement. Group II introns are mainly disseminated via plasmids and can subsequently invade the host genome, in particular by coupling mobility with host cell replication. This study reveals a very high diversity and variability of mobile introns in B. cereus group strains.  相似文献   

18.
The group IIA intron Ll.LtrB from Lactococcus lactis and the group IIB intron EcI5 from Escherichia coli have intron-encoded proteins (IEP) with a DNA-binding domain (D) and an endonuclease domain (En). Both have been successfully retargeted to invade target DNAs other than their wild-type target sites. RmInt1, a subclass IIB3/D intron with an IEP lacking D and En domains, is highly active in retrohoming in its host, Sinorhizobium meliloti. We found that RmInt1 was also mobile in E. coli and that retrohoming in this heterologous host depended on temperature, being more efficient at 28°C than at 37°C. Furthermore, we programmed RmInt1 to recognize target sites other than its wild-type site. These retargeted introns efficiently and specifically retrohome into a recipient plasmid target site or a target site present as a single copy in the chromosome, generating a mutation in the targeted gene. Our results extend the range of group II introns available for gene targeting.  相似文献   

19.
Analyses of mitochondrial sequences revealed the existence of a group I intron in the cytochrome oxidase subunit 1 (cox1) gene in 13 of 41 genera (20 out of 73 species) of corals conventionally assigned to the suborder Faviina. With one exception, phylogenies of the coral cox1 gene and its intron were concordant, suggesting at most two insertions and many subsequent losses. The coral introns were inferred to encode a putative homing endonuclease with a LAGLI-DADG motif as reported for the cox1 group I intron in the sea anemone Metridium senile. However, the coral and sea anemone cox1 group I introns differed in several aspects, such as the intron insertion site and sequence length. The coral cox1 introns most closely resemble the mitochondrial cox1 group I introns of a sponge species, which also has the same insertion site. The coral introns are also more similar to the introns of several fungal species than to that of the sea anemone (although the insertion site differs in the fungi). This suggests either a horizontal transfer between a sponge and a coral or independent transfers from a similar fungal donor (perhaps one with an identical insertion site that has not yet been discovered). The common occurrence of this intron in corals strengthens the evidence for an elevated abundance of group I introns in the mitochondria of anthozoans. [Reviewing Editor: Dr. Niles Lehman]  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号