首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foot-and-mouth disease virus (FMDV) utilizes different cell surface macromolecules to facilitate infection of cultured cells. Virus, which is virulent for susceptible animals, infects cells via four members of the alpha(V) subclass of cellular integrins. In contrast, tissue culture adaptation of some FMDV serotypes results in the loss of viral virulence in the animal, accompanied by the loss of virus' ability to use integrins as receptors. These avirulent viral variants acquire positively charged amino acids on surface-exposed structural proteins, resulting in the utilization of cell surface heparan sulfate (HS) molecules as receptors. We have recently shown that FMDV serotypes utilizing integrin receptors enter cells via a clathrin-mediated mechanism into early endosomes. Acidification within the endosome results in a breakdown of the viral capsid, releasing the RNA, which enters the cytoplasm by a still undefined mechanism. Since there is evidence that HS internalizes bound ligands via a caveola-mediated mechanism, it was of interest to analyze the entry of FMDV by cell-surface HS. Using a genetically engineered variant of type O(1)Campos (O(1)C3056R) which can utilize both integrins and HS as receptors and a second variant (O(1)C3056R-KGE) which can utilize only HS as a receptor, we followed viral entry using confocal microscopy. After virus bound to cells at 4 degrees C, followed by a temperature shift to 37 degrees C, type O(1)C3056R-KGE colocalized with caveolin-1, while O(1)C3056R colocalized with both clathrin and caveolin-1. Compounds which either disrupt or inhibit the formation of lipid rafts inhibited the replication of O(1)C3056R-KGE. Furthermore, a caveolin-1 knockdown by RNA interference also considerably reduced the efficiency of O(1)C3056R-KGE infection. These results indicate that HS-binding FMDV enters the cells via the caveola-mediated endocytosis pathway and that caveolae can associate and traffic with endosomes. In addition, these results further suggest that the route of FMDV entry into cells is a function solely of the viral receptor.  相似文献   

2.
We have developed naked DNA vaccine candidates for foot-and-mouth disease (FMD), an important disease of domestic animals. The virus that causes this disease, FMDV, is a member of the picornavirus family, which includes many important human pathogens, such as poliovirus, hepatitis A virus, and rhinovirus. Picornaviruses are characterized by a small (7-9000 nucleotide) RNA genome that encodes capsid proteins, processing proteinases, and enzymes required for RNA replication. We have developed two different types of DNA vaccines for FMD. The first DNA vaccine, pP12X3C, encodes the viral capsid gene (P1) and the processing proteinase (3C). Cells transfected with this DNA produce processed viral antigen, and animals inoculated with this DNA using a gene gun produced detectable antiviral immune responses. Mouse inoculations with this plasmid, and with a derivative containing a mutation in the 3C proteinase, indicated that capsid assembly was essential for induction of neutralizing antibody responses. The second DNA vaccine candidate, pWRMHX, encodes the entire FMDV genome, including the RNA-dependent RNA polymerase, permitting the plasmid-encoded viral genomes to undergo amplification in susceptible cells. pWRMHX encodes a mutation at the cell binding site, preventing the replicated genomes from causing disease. Swine inoculated with this vaccine candidate produce viral particles lacking the cell binding site, and neutralizing antibodies that recognize the virus. Comparison of the immune responses elicited by pP12X3C and pWRMHX in swine indicate that the plasmid encoding the replicating genome stimulated a stronger immune response, and swine inoculated with pWRMHX by the intramuscular, intradermal, or gene gun routes were partially protected from a highly virulent FMD challenge.  相似文献   

3.
4.
G Ward  E Rieder    P W Mason 《Journal of virology》1997,71(10):7442-7447
DNA vaccine candidates for foot-and-mouth disease (FMD) were engineered to produce FMD virus (FMDV) particles that were noninfectious in cell culture or animals. The prototype plasmid, pWRM, contains a cytomegalovirus immediate-early promoter-driven genome-length type A12 cDNA followed by the bovine growth hormone polyadenylation site. BHK cells transfected with this plasmid produced virus, but the specific infectivity of pWRM was much lower than that achieved with in vitro-generated RNA genomes. To improve the infectivity of the plasmid, a cDNA encoding the hepatitis delta virus ribozyme was added to the 3' end of the FMDV cDNA. The resulting plasmid, pWRMH, exhibited slightly increased infectivity in cell culture and produced virus when inoculated into suckling mice. A third plasmid, pWRMHX, was created by removal of the sequences encoding the cell binding site found in capsid protein VP1 of pWRMH. Although cells transfected with pWRMHX produced viral capsids, this plasmid was not lethal in suckling mice, indicating that particles lacking the cell binding site were not able to initiate secondary infectious cycles. Swine inoculated with pWRMHX did not show any signs of disease and produced neutralizing antibodies to FMDV, and 20% of the vaccinated animals were protected from challenge. A derivative of pWRMHX, pWRMHX-pol-, harboring a mutation designed to inactivate the viral polymerase was much less immunogenic, indicating that immunogenicity of pWRMHX resulted, in part, from amplification of the viral genome in the animal.  相似文献   

5.
6.
【目的】近年来,O型口蹄疫的不断暴发严重危害了我国畜牧业的发展,其病原——O型口蹄疫病毒已演化出3种谱系:中国型猪毒系、泛亚系和缅甸98系。其中中国型猪毒系病毒高度嗜猪,对养猪业危害最大。目前应用的疫苗已不能有效保护中国型猪毒系变异株的流行,这给我国猪口蹄疫的防控带来了极大的困难。为了进一步发展免疫原性好、抗原谱广的猪O型口蹄疫疫苗候选株,本研究以O/HN/93现用疫苗毒株的感染性克隆为骨架,用流行的新猪毒系病毒的部分VP3和VP1基因(主要是替换VP1蛋白上的B-C环和G-H环)替换疫苗毒株的相应部分,构建了嵌合的FMDV全长cDNA克隆。【方法】线化的嵌合全长质粒和表达T7 RNA聚合酶的真核质粒pcDNAT7P共转染BHK-21细胞,体内转录拯救嵌合病毒。【结果】嵌合全长质粒转染BHK-21细胞36h后,出现明显的FMDV致细胞病变效应。对收获的病毒分别用RT-PCR、间接免疫荧光、电子显微镜观察结果证实成功拯救到嵌合的FMDV。拯救的病毒乳鼠致病性试验结果表明该拯救病毒对乳鼠的致病力减弱。该嵌合病毒的成功拯救为研制口蹄疫新型疫苗等奠定了基础。  相似文献   

7.
To prove whether error catastrophe/lethal mutagenesis is the primary antiviral mechanism of action of ribavirin against foot-and-mouth disease virus (FMDV). Ribavirin passage experiments were performed and supernatants of Rp1 to Rp5 were harvested. Morphological alterations as well as the levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected using the supernatants of Rp1 to Rp5 and control were measured by microscope, real-time RT-PCR, western-blotting and plaque assays, respectively. The mutation frequency was measured by sequencing the complete P1- and 3D-encoding region of FMDV after a single round of virus infection from ribavirin-treated or untreated FMDV-infected cells. Ribavirin treatment for FMDV caused dramatically inhibition of multiplication in cell cultures. The levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected were more greatly reduced along with the passage from Rp1 to Rp5, moreover, nucleocapsid protein could not be detected and no recovery of infectious virus in the supernatant or detection of intracellular viral RNA was observed at the Rp5-infected cells. A high mutation rate, giving rise to an 8-and 11-fold increase in mutagenesis and resulting in some amino acid substitutions, was found in viral RNA synthesized at a single round of virus infection in the presence of ribavirin of 1000 microM and caused a 99.7% loss in viral infectivity in contrast with parallel untreated control virus. These results suggest that the antiviral molecular mechanism of ribavirin is based on the lethal mutagenesis/error catastrophe, that is, the ribavirin is not merely an antiviral reagent but also an effective mutagen.  相似文献   

8.
为了研制口蹄疫抗原表位突变标记疫苗,本研究以含有Asia 1型口蹄疫病毒(FMDV)c DNA全长的感染性克隆p Asia 1-FMDV作为骨架,将3D蛋白中第27位氨基酸的H和31位的氨基酸N分别突变成Y和R,从而突变3D蛋白的一个抗原表位,将构建的带有突变表位的重组质粒转染BHK-21细胞,成功拯救出一株突变FMDV。经比较后发现,重组病毒的生物学特性与亲本毒株相似。病毒中和试验结果显示,抗重组病毒的血清与亲本病毒有良好的反应性。Western blotting结果表明重组病毒诱导的抗体能与突变的表位合成肽反应而不与野生型病毒的表位合成肽发生反应,从而区分重组病毒与亲本病毒。综上所述,这株抗原表位突变FMDV有望作为口蹄疫标记疫苗候株进一步评估。  相似文献   

9.
10.
The role of dendritic cells (DC) in the initiation of immune responses against foot-and-mouth disease virus (FMDV) is poorly understood. We analyzed the innate response of freshly isolated swine skin DC to the virus and show a rapid induction of beta interferon (IFN-beta) mRNA but not IFN-alpha mRNA. However, these DC secreted both IFN-alpha and IFN-beta proteins in response to live virus but not killed virus. Furthermore, the surface expression of swine major histocompatibility complex class II (SLA II) or CD80/CD86 molecules and antigen processing functions were not affected by FMDV exposure. Given the demonstrated sensitivity of FMDV to IFN-alpha/beta, there was no productive or nonproductive infection of these cells. Finally, freshly isolated skin DC constitutively expressed intracellular IFN-alpha protein in the absence of stimulation, with no detectable secretion of the cytokine until virus exposure. In situ analysis of these DC showed that these cells express and store IFN-alpha in uninfected animals. This is the first demonstration of the constitutive expression of IFN-alpha in resident, tissue-derived DC and indicates that skin DC can play an important role in the innate immune response of swine to viral infections.  相似文献   

11.
Modified vaccinia virus Ankara (MVA) is an attenuated strain of vaccinia virus (VV) that has attracted significant attention as a candidate viral vector vaccine for immunization against infectious diseases and treatment of malignancies. Although MVA is unable to replicate in most nonavian cells, vaccination with MVA elicits immune responses that approximate those seen after the administration of replication-competent strains of VV. However, the mechanisms by which these viruses elicit immune responses and the determinants of their relative immunogenicity are incompletely understood. Studying the interactions of VV and MVA with cells of the human immune system may elucidate these mechanisms, as well as provide a rational basis for the further enhancement of the immunogenicity of recombinant MVA vectors. Toward this end, we investigated the consequences of MVA or VV infection of human dendritic cells (DCs), key professional antigen-presenting cells essential for the generation of immune responses. We determined that a block to the formation of intracellular viral replication centers results in abortive infection of DCs with both VV and MVA. MVA inhibited cellular protein synthesis more rapidly than VV and displayed a distinct pattern of viral protein expression in infected DCs. MVA also induced apoptosis in DCs more rapidly than VV, and DC apoptosis after MVA infection was associated with an accelerated decline in the levels of intracellular Bcl-2 and Bcl-X(L). These findings suggest that antigen presentation pathways may contribute differentially to the immunogenicity of VV and MVA and that targeted modifications of virus-induced DC apoptosis may further increase the immunogenicity of MVA-vectored vaccines.  相似文献   

12.
Dendritic cells (DC) support human immunodeficiency virus type 1 (HIV-1) transmission by capture of the virus particle in the mucosa and subsequent transport to the draining lymph node, where HIV-1 is presented to CD4(+) Th cells. Virus transmission involves a high-affinity interaction between the DC-specific surface molecule DC-SIGN and the viral envelope glycoprotein gp120 and subsequent internalization of the virus, which remains infectious. The mechanism of viral transmission from DC to T cells is currently unknown. Sentinel immature DC (iDC) develop into Th1-promoting effector DC1 or Th2-promoting DC2, depending on the activation signals. We studied the ability of these effector DC subsets to support HIV-1 transmission in vitro. Compared with iDC, virus transmission is greatly upregulated for the DC1 subset, whereas DC2 cells are inactive. Increased transmission by DC1 correlates with increased expression of ICAM-1, and blocking studies confirm that ICAM-1 expression on DC is important for HIV transmission. The ICAM-1-LFA-1 interaction is known to be important for immunological cross talk between DC and T cells, and our results indicate that this cell-cell contact is exploited by HIV-1 for efficient transmission.  相似文献   

13.
Cell surface molecules that can act as virus receptors may exert an important selective pressure on RNA viral quasispecies. Large population passages of foot-and-mouth disease virus (FMDV) in cell culture select for mutant viruses that render dispensable a highly conserved Arg-Gly-Asp (RGD) motif responsible for integrin receptor recognition. Here, we provide evidence that viability of recombinant FMDVs including a Asp-143-->Gly change at the RGD motif was conditioned by a number of capsid substitutions selected upon FMDV evolution in cell culture. Multiply passaged FMDVs acquired the ability to infect human K-562 cells, which do not express integrin alpha(v)beta(3). In contrast to previously described cell culture-adapted FMDVs, the RGD-independent infection did not require binding to the surface glycosaminoglycan heparan sulfate (HS). Viruses which do not bind HS and lack the RGD integrin-binding motif replicate efficiently in BHK-21 cells. Interestingly, FMDV mutants selected from the quasispecies for the inability to bind heparin regained sensitivity to inhibition by a synthetic peptide that represents the G-H loop of VP1. Thus, a single amino acid replacement leading to loss of HS recognition can shift preferential receptor usage of FMDV from HS to integrin. These results indicate at least three different mechanisms for cell recognition by FMDV and suggest a potential for this virus to use multiple, alternative receptors for entry even into the same cell type.  相似文献   

14.
15.
16.
The structural proteins (SP) of the Togaviridae can be deleted in defective interfering RNAs. The dispensability of viral SP has allowed construction of noninfectious viral expression vectors and replicons from viruses of the Alphavirus and Rubivirus genera. Nevertheless, in this study, we found that the SP of rubella virus (RUB) could enhance expression of reporter genes from RUB replicons in trans. SP enhancement required capsid protein (CP) expression and was not due to RNA-RNA recombination. Accumulation of minus- and plus-strand RNAs from replicons was observed in the presence of SP, suggesting that SP specifically affects RNA synthesis. By using replicons containing an antibiotic resistance gene, we found 2- to 50-fold increases in the number of cells surviving selection in the presence of SP. The increases depended significantly on the amount of transfected RNA. Small amounts of RNA or templates that replicated inefficiently showed more enhancement. The infectivity of infectious RNA was increased by at least 10-fold in cells expressing CP. Moreover, virus infectivity was greatly enhanced in such cells. In other cells that expressed higher levels of CP, RNA replication of replicons was inhibited. Thus, depending on conditions, CP can markedly enhance or inhibit RUB RNA replication.  相似文献   

17.
18.
Hepatitis B virus (HBV) acute and chronic infections remain a major worldwide health problem. Towards developing an anti-HBV vaccine with single-dose scheme potential, we engineered infectious measles virus (MV) genomic cDNAs with a vaccine strain background and expression vector properties. Hepatitis B surface antigen (HBsAg) expression cassettes were inserted into this cDNA and three MVs expressing HBsAg at different levels generated. All vectored MVs, which secrete HBsAg as subviral particles, elicited humoral responses in MV-susceptible genetically modified mice. However, small differences in HBsAg expression elicited vastly different HBsAg antibody levels. The two vectors inducing the highest HBsAg antibody levels were inoculated into rhesus monkeys (Macaca mulatta). After challenge with a pathogenic MV strain (Davis87), control naive monkeys showed a classic measles rash and high viral loads. In contrast, all monkeys immunized with vaccine or a control nonvectored recombinant vaccine or HBsAg-expressing vectored MV remained healthy, with low or undetectable viral loads. After a single vaccine dose, only the vector expressing HBsAg at the highest levels elicited protective levels of HBsAg antibodies in two of four animals. These observations reveal an expression threshold for efficient induction of HBsAg humoral immune responses. This threshold is lower in mice than in macaques. Implications for the development of divalent vaccines based on live attenuated viruses are discussed.  相似文献   

19.
20.
In a recent vaccine trial, we showed efficient control of a virulent simian-human immunodeficiency virus SHIV-89.6P challenge by priming with a Gag-Pol-Env-expressing DNA and boosting with a Gag-Pol-Env- expressing recombinant-modified vaccinia virus Ankara. Here we show that long-term control has been associated with slowly declining levels of viral RNA and DNA. In the vaccinated animals both viral DNA and RNA underwent an initial rapid decay, which was followed by a lower decay rate. Between 12 and 70 weeks postchallenge, the low decay rates have had half-lives of about 20 weeks for viral RNA in plasma and viral DNA in peripheral blood mononuclear cells and lymph nodes. In vaccinated animals the viral DNA has been mostly unintegrated and has appeared to be largely nonfunctional as evidenced by a poor ability to recover infectious virus in cocultivation assays, even after CD8 depletion. In contrast, in control animals, which have died, viral DNA was mostly integrated and a larger proportion appeared to be functional as evidenced by the recovery of infectious virus. Thus, to date, control of the challenge infection has appeared to improve with time, with the decay rates for viral DNA being at the lower end of values reported for patients on highly active antiretroviral therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号