首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Immunization with recombinant proteins may provide a safer alternative to live vaccinia virus for prophylaxis of poxvirus infections. Although antibody protects against vaccinia virus infection, the mechanism is not understood and the selection of immunogens is daunting as there are dozens of surface proteins and two infectious forms known as the mature virion (MV) and the enveloped virion (EV). Our previous studies showed that mice immunized with soluble forms of EV membrane proteins A33 and B5 and MV membrane protein L1 or passively immunized with antibodies to these proteins survived an intranasal challenge with vaccinia virus. The present study compared MV protein A27, which has a role in virus attachment to glycosaminoglycans on the cell surface, to L1 with respect to immunogenicity and protection. Although mice developed similar levels of neutralizing antibody after immunizations with A27 or L1, A27-immunized mice exhibited more severe disease upon an intranasal challenge with vaccinia virus. In addition, mice immunized with A27 and A33 were not as well protected as mice receiving L1 and A33. Polyclonal rabbit anti-A27 and anti-L1 IgG had equivalent MV-neutralizing activities when measured by the prevention of infection of human or mouse cells or cells deficient in glycosaminoglycans or by adding antibody prior to or after virus adsorption. Nevertheless, the passive administration of antibody to A27 was poorly protective compared to the antibody to L1. These studies raise questions regarding the basis for antibody protection against poxvirus disease and highlight the importance of animal models for the early evaluation of vaccine candidates.  相似文献   

3.
Cellular and humoral immunity against vaccinia virus infection of mice   总被引:8,自引:0,他引:8  
Despite the widespread use of vaccinia virus (VV) as a vector for other Ags and as the smallpox vaccine, there is little information available about the protective components of the immune response following VV infection. In this study, protection against wild-type VV was evaluated in mice with respect to the relative contributions of CD8(+) T cells vs that of CD4(+) T cells and Ab. C57BL/6 mice primed with the Western Reserve strain of VV mount significant IgM and IgG Ab responses, specific cytotoxic T cell responses, IFN-gamma responses in CD4(+) and CD8(+) T cells, and effectively clear the virus. This protection was abrogated by in vivo depletion of CD4(+) T cells or B cells in IgH(-/-) mice, but was not sensitive to CD8(+) T cell depletion alone. However, a role for CD8(+) T cells in primary protection was demonstrated in MHC class II(-/-) mice, where depleting CD8(+) T cells lead to increase severity of disease. Unlike control MHC class II(-/-) mice, the group depleted of CD8(+) T cells developed skin lesions on the tail and feet and had adrenal necrosis. Adoptive transfer experiments also show CD8(+) T cells can mediate protective memory. These results collectively show that both CD4(+) and CD8(+) T cell-mediated immunity can contribute to protection against VV infection. However, CD4(+) T cell-dependent anti-virus Ab production plays a more important role in clearing virus following acute infection, while in the absence of Ab, CD8(+) T cells can contribute to protection against disease.  相似文献   

4.
Zhang Y  Yang J  Bao R  Chen Y  Zhou D  He B  Zhong M  Li Y  Liu F  Li Q  Yang Y  Han C  Sun Y  Cao Y  Yan H 《PloS one》2011,6(9):e24296
The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol) in mucosal epithelial cells (specifically Caco-2 cell layers) and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.  相似文献   

5.
6.
While immunological memory has long been considered the province of T- and B-lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1(+) subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1(+) NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance.  相似文献   

7.
Mutations in the genes that encode Fas or Fas ligand (FasL) can result in poor restraints on lymphocyte activation and in increased susceptibility to autoimmune disorders. Because these mutations portend a continuously activated immune state, we hypothesized that they might in some cases confer resistance to infection. To examine this possibility, the immune response to, morbidity caused by, and clearance of vaccinia virus (VACV) Western Reserve was examined in 5- to 7-week-old Fas mutant (lpr) mice, before an overt lymphoproliferative disorder was observable. On day 6 after VACV infection, C57BL/6-lpr (B6-lpr) mice had decreased morbidity, decreased viral titers, and an increased percentage and number of CD4(+) and CD8(+) T cells. As early as day 2 after infection, B6-lpr mice had decreased liver and spleen viral titers and increased numbers of and increased gamma interferon (IFN-γ) production by several different effector cell populations. Depletion of individual effector cell subsets did not inhibit the resistance of B6-lpr mice. Uninfected B6-lpr mice also had increased numbers of NK cells, γδ(+) T cells, and CD44(+) CD4(+) and CD44(+) CD8(+) T cells compared to uninfected B6 mice. Antibody to IFN-γ resulted in increased virus load in both B6 and B6-lpr mice and eliminated the differences in viral titers between them. These results suggest that IFN-γ produced by multiple activated leukocyte populations in Fas-deficient hosts enhances resistance to some viral infections.  相似文献   

8.
9.
Yang P  Duan Y  Zhang P  Li Z  Wang C  Dong M  Tang C  Xing L  Gu H  Zhao Z  Liu X  Zhang S  Wang X 《PloS one》2012,7(1):e30252

Background

The increase in recent outbreaks and unpredictable changes of highly pathogenic avian influenza (HPAI) H5N1 in birds and humans highlights the urgent need to develop a cross-protective H5N1 vaccine. We here report our development of a multiple-clade H5N1 influenza vaccine tested for immunogenicity and efficacy to confer cross-protection in an animal model.

Methodology/Principal Findings

Mice received two doses of influenza split vaccine with oil-in-water emulsion adjuvant SP01 by intranasal administration separated by two weeks. Single vaccines (3 µg HA per dose) included rg-A/Vietnam/1203/2004(Clade 1), rg-A/Indonesia/05/2005(Clade 2.1), and rg-A/Anhui/1/2005(Clade 2.3.4). The trivalent vaccine contained 1 µg HA per dose of each single vaccine. Importantly, complete cross-protection was observed in mice immunized using trivalent vaccine with oil-in-water emulsion adjuvant SP01 that was subsequently challenged with the lethal A/OT/SZ/097/03 influenza strain (Clade 0), whereas only the survival rate was up to 60% in single A/Anhui/1/2005 vaccine group.

Conclusion/Significance

Our findings demonstrated that the multiple-clade H5N1 influenza vaccine was able to elicit a cross-protective immune response to heterologous HPAI H5N1 virus, thus giving rise to a broadly cross-reactive vaccine to potential prevention use ahead of the strain-specific pandemic influenza vaccine in the event of an HPAI H5N1 influenza outbreak. Also, the multiple-clade adjuvanted vaccine could be useful in allowing timely initiation of vaccination against unknown pandemic virus.  相似文献   

10.
Mice immunized with two intragastrically administered doses of a replication-deficient recombinant vaccinia virus containing the hemagglutinin and nucleoprotein genes from H1N1 influenza virus developed serum anti-H1 immunoglobulin G (IgG) antibody that completely protected the lungs from challenge with H1N1. Almost all of the mice given two intragastric doses also developed mucosal anti-H1 IgA antibody, and those with high anti-H1 IgA titers had completely protected noses. Intramuscular injection of the vaccine protected the lungs but not the noses from challenge. We also found that the vaccine enhanced recovery from infection caused by a shifted (H3N2) influenza virus, probably through the induction of nucleoprotein-specific cytotoxic T-lymphocyte activity. A replication-deficient, orally administered, enteric-coated, vaccinia virus-vectored vaccine might safely protect humans against influenza.  相似文献   

11.
Protein-based subunit smallpox vaccines have shown their potential as effective alternatives to live virus vaccines in animal model challenge studies. We vaccinated mice with combinations of three different vaccinia virus (VACV) proteins (A33, B5, L1) and examined how the combined antibody responses to these proteins cooperate to effectively neutralize the extracellular virus (EV) infectious form of VACV. Antibodies against these targets were generated in the presence or absence of CpG adjuvant so that Th1-biased antibody responses could be compared to Th2-biased responses to the proteins with aluminum hydroxide alone, specifically with interest in looking at the ability of anti-B5 and anti-A33 polyclonal antibodies (pAb) to utilize complement-mediated neutralization in vitro. We found that neutralization of EV by anti-A33 or anti-B5 pAb can be enhanced in the presence of complement if Th1-biased antibody (IgG2a) is generated. Mechanistic differences found for complement-mediated neutralization showed that anti-A33 antibodies likely result in virolysis, while anti-B5 antibodies with complement can neutralize by opsonization (coating). In vivo studies found that mice lacking the C3 protein of complement were less protected than wild-type mice after passive transfer of anti-B5 pAb or vaccination with B5. Passive transfer of anti-B5 pAb or monoclonal antibody into mice lacking Fc receptors (FcRs) found that FcRs were also important in mediating protection. These results demonstrate that both complement and FcRs are important effector mechanisms for antibody-mediated protection from VACV challenge in mice.  相似文献   

12.
The entry of DENV into the host cell appears to be a very complex process which has been started to be studied in detail. In this report, the route of functional intracellular trafficking after endocytic uptake of dengue virus serotype 1 (DENV-1) strain HW, DENV-2 strain NGC and DENV-2 strain 16681 into Vero cells was studied by using a susceptibility to ammonium chloride assay, dominant negative mutants of several members of the family of cellular Rab GTPases that participate in regulation of transport through endosome vesicles and immunofluorescence colocalization. Together, the results presented demonstrate that in spite of the different internalization route among viral serotypes in Vero cells and regardless of the viral strain, DENV particles are first transported to early endosomes in a Rab5-dependent manner. Then a Rab7-dependent pathway guides DENV-2 16681 to late endosomes, whereas a yet unknown sorting event controls the transport of DENV-2 NGC, and most probably DENV-1 HW, to the perinuclear recycling compartments where fusion membrane would take place releasing nucleocapsid into the cytoplasm. Besides the demonstration of a different intracellular trafficking for two DENV-2 strains that shared the initial clathrin-independent internalization route, these studies proved for the first time the involvement of the slow recycling pathway for DENV-2 productive infection.  相似文献   

13.
Using Toll-like receptor (TLR) and MyD88 gene knock-out (GKO) mice the effect of TLRs and MyD88 on virus replication, interferon (IFN)-β production, natural killer (NK) cell and CD8T cell responses were assessed following ectromelia virus (ECTV) and recombinant vaccinia virus (rVV) infection. The capacity for rVVs encoding cytokines to restore immune function in MyD88(-/-) mice was clearly demonstrated. Results showed that TLR2(-/-), TLR4(-/-)and TLR7(-/-) mice survived ECTV infection whereas MyD88(-/-) and TLR9(-/-)mice, in contrast, were highly susceptible. Next, following infection with rVV, MyD88(-/-) mice elicited reduced serum IFN-β, NK cell and CD8T cell responses compared with wild-type mice, whereas TLR9(-/-) mice showed elevated CD8T cell responses. When MyD88(-/-)mice were infected with rVV co-expressing IFN-β these mice were able to restore IFN-β levels and CD8T cell responses but not NK cell activation. Interestingly, even though rVV co-expressing interleukin (IL)-2 enhanced NK cell activation in MyD88(-/-) mice, this was not associated with an antiviral effect, as observed in normal mice. Surprisingly, co-infection with rVV IL-2/rVV IL-12, but not rVV IL-2/rVV IFN-β, restored the attenuated phenotype of rVV IL-2 in MyD88(-/-) mice indicating that the IL-2/IL-12 combination promotes antiviral responses. Our results clearly show that the CD8T cell defect observed in MyD88(-/-) mice to vaccinia virus infection can be restored by rVV-encoding IFN-β demonstrating the critical role of this cytokine in T cell mediated immunity and illustrates that the model can provide an effective platform for the elucidation of cytokine immunobiology.  相似文献   

14.
A murine model immunized with plasmid DNA vaccine expressing three glycoproteins pCIgB, pCIgC and pCIgD were used to examine the relative potency of major glycoproteins as well as the contribution of immunological parameters in providing protective immunity against the pseudorabies virus (PrV). Among the three glycoprotein-encoded plasmid DNA vaccines, pCIgB produced the strongest response of PrV-specific IgG in the sera. pCIgB and pCIgD also induced a contrast pattern of immunity that was biased to the Th1 and Th2 types, respectively. pCIgC showed the potent inducer of CD8+ T-cell-mediated CTL activity against PrV. In addition, a cocktail vaccination of all three glycoprotein-encoded plasmid DNA vaccines induced the production of both cytokine types, Th1 and Th2 with levels that were the same as that of each immunogen. With regard to protective efficacy, pCIgB induced the most effective protection against a virulent virus challenge and a cocktail vaccination appeared to offer complete protection against a 5 LD50 challenge, but not a 10 LD50 one. pCIgD induced protection that was same as pCIgB, but pCIgC offered no effective protection. These results show the relative potency of the three glycoprotein-encoded PrV DNA vaccines in inducing protective immunity against PrV infection. The results in this study support previous results showing the importance of Th1-type CD4+ T cells and their antibodies in conferring protection.  相似文献   

15.
16.
T cell-APC interactions are essential for the initiation of effector responses against foreign and self-antigens, but the role of these interactions in generating different populations of effector T cells in vivo remains unclear. Using a model of CD4(+) T cell responses to a systemic self-antigen without adjuvants or infection, we demonstrate that activation of APCs augments Th17 responses much more than Th1 responses. Recognition of systemic Ag induces tolerance in self-reactive CD4(+) T cells, but induction of CD40 signaling, even under tolerogenic conditions, results in a strong, Ag-specific IL-17 response without large numbers of IFN-γ-producing cells. Transfer of the same CD4(+) T cells into lymphopenic recipients expressing the self-antigen results in uncontrolled production of IL-17, IFN-γ, and systemic inflammation. If the Ag-specific T cells lack CD40L, production of IL-17 but not IFN-γ is decreased, and the survival time of recipient mice is significantly increased. In addition, transient blockade of the initial MHC class II-dependent T cell-APC interaction results in a greater reduction of IL-17 than of IFN-γ production. These data suggest that Th17 differentiation is more sensitive to T cell interactions with APCs than is the Th1 response, and interrupting this interaction, specifically the CD40 pathway, may be key to controlling Th17-mediated autoimmunity.  相似文献   

17.
Recombinant vaccinia virus vectors were constructed which expressed the major surface glycoprotein G of human respiratory syncytial (RS) virus. The biological activity of the G protein expressed from these vectors was assayed. Inoculation of rabbits with live recombinant virus induced high titers of antibody which specifically immunoprecipitated RS virus G protein and was capable of neutralizing RS virus infectivity. Immunization of mice by either the intranasal or the intraperitoneal route with recombinant virus that expressed only the G protein resulted in complete protection of the lower respiratory tract upon subsequent challenge with live RS virus.  相似文献   

18.
Modified vaccinia Ankara (MVA) is an attenuated virus. MVA induces the production of IFN and Flt3-L (FL), which results in the expansion of dendritic cells (DC) and enhanced resistance against viral infections. We report on the interplay among IFN, FL, and DC in the resistance against heterologous virus after injection of neonatal mice with MVA. The induction of serum FL was tested on day 2, and the expansion of DC was tested 1 wk after treatment with MVA. At this time point the resistance against infection with heterologous virus was also determined. After MVA treatment, serum FL was enhanced, and DC, including plasmacytoid cells in spleen, were increased in number. Mice that lacked functional IFN type I and II systems failed to increase both the concentration of FL and the number of DC. Treatment with MVA enhanced resistance against HSV-1 in wild-type animals 100-fold, but animals without a functional IFN system were not protected. Transfer of CD11c(+) cells from MVA-treated mice into naive animals protected against lethal infection with HSV-1. Thus, although the increased resistance could be largely attributed to the increase in activation of IFN-producing plasmacytoid cells, this, in turn, depends on a complex interplay between the DC and T cell systems involving both FL and IFNs.  相似文献   

19.
The ataxia-telangiectasia mutated (ATM) gene product plays a role in responding to double stand DNA breaks. Some biochemical studies of ATM function have been hampered by lack of an efficient expression system and abundant purified ATM protein. We report the construction of a vaccinia virus expressing ATM, vWR-ATM, which was used to produce large amounts of functional FLAG-tagged ATM protein (FLAG-ATM) in HeLa cells. Kinase activity of the purified FLAG-ATM was dependent on manganese and inhibited with wortmannin. Using the FLAG-ATM recombinant protein, GST-p53 serine 15 phosphorylation increased in the presence of damaged DNA. PHAS-1 phosphorylation was found to be DNA independent. Purified FLAG-ATM was recovered in the autophosphorylated form, as demonstrated by phosphorylation of ATM serine 1981. As shown by atomic force microscopy, FLAG-ATM bound to linear DNA both at broken ends and in mid-strands. Vaccinia virus is the most efficient ATM expression system described to date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号