首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
《Palaeoworld》2020,29(2):353-367
Extensive geological and paleontological materials from the upper Permian and the Lower Triassic of the East European Platform had been accumulated by the end of the 20th century. Recently obtained new data indicate the stratigraphic continuity of the East European Permian–Triassic succession. The Permian–Triassic boundary is in many sections associated with the boundary between the Zhukovian and Vokhmian regional stages. New stratigraphic data have led to the revision of the temporal distribution of Zhukovian and Vokhmian ostracodes. In contrast to previous ideas, the rapid development of genus Gerdalia already began in the Zhukovian time rather than in the Vokhmian. At the same time, the first Darwinula of the Triassic type also appeared in the Zhukovian. A proportion of the Permian species were found to cross the boundary between Zhukovian and Vokhmian. The degree of similarity between the Permian and Triassic ostracode assemblages turns out to be much higher than previously recognized.  相似文献   

2.
《Palaeoworld》2020,29(2):186-238
Nonmarine biostratigraphic/biochronologic schemes have been created for all or parts of the late Carboniferous–Middle Triassic using palynomorphs, megafossil plants, conchostracans, blattoid insects, tetrapod footprints and tetrapod body fossils, and these provide varied temporal resolution. Cross correlation of the nonmarine biochronologies to the Standard Global Chronostratigraphic Scale has been achieved in some parts of the late Carboniferous–Middle Triassic in locations where nonmarine and marine strata are intercalated, the nonmarine strata produce biochronologically significant fossils and the marine strata yield fusulinids, conodonts and/or ammonoids. Other cross correlations have been aided by magnetostratigraphy, chemostratigraphy and a growing database of radioisotopic ages. A synthetic nonmarine biochronology for the late Carboniferous–Middle Triassic based on all available nonmarine index fossils, integrated with the Standard Global Chronostratigraphic Scale, is presented here. The focus is on the nonmarine biostratigraphy/biochronology of blattoid insects, conchostracans, branchiosaurid amphibians, tetrapod footprints and tetrapod body fossils within the biochronological framework of land-vertebrate faunachrons. Correlation to the Standard Global Chronostratigraphic Scale presented here is divided into seven time intervals: Pennsylvanian, Carboniferous–Permian boundary, Cisuralian, Guadalupian, Lopingian, Permian–Triassic boundary and Early to Middle Triassic. The insects, conchostracans and branchiosaurs provide robust nonmarine correlations in the Pennsylvanian–Cisuralian, and the footprints and tetrapod body fossils provide robust correlations of varied precision within the entire Pennsylvanian–Middle Triassic. Radioisotopic ages are currently the strongest basis for cross correlation of the nonmarine biostratigraphy/biochronology to the Standard Global Chronostratigraphic Scale, particularly for the Pennsylvanian–Cisuralian. Chemostratigraphy and magnetostratigraphy thus far provide only limited links of nomarine and marine chronologies. Improvements in the nonmarine-marine correlations of late Paleozoic–Triassic Pangea require better alpha taxonomy and stratigraphic precision for the nonmarine fossil record integrated with more reliable radioisotopic ages and more extensive chemostratigraphic and magnetostratigraphic datasets.  相似文献   

3.
Krapovickas, V., Mancuso, A.C., Marsicano, C.A., Domnanovich, N.S. & Schultz, C.L. 2013: Large tetrapod burrows from the Middle Triassic of Argentina: a behavioural adaptation to seasonal semi‐arid climate? Lethaia, Vol. 46, pp. 154–169. We report the discovery of large burrow casts in the early Middle Triassic Tarjados Formation, at Talampaya National Park, north‐western Argentina. Facies analysis indicates the burrows are preserved in sandbars deposited by an ephemeral river under semi‐arid and seasonal climatic conditions. The structures are mostly preserved in longitudinal cross‐section and consist of an opening, an inclined tunnel (ramp), and a terminal chamber. The ramp is 8–14 cm in height, up to 130 cm in length and penetrates 49–63 cm bellow the palaeosurface with an inclination of 22°–30°. We studied burrow cast dimensions, overall architectural morphology, surficial marks, and compared them with other large burrows of both invertebrate and vertebrate origin. A tetrapod origin of the burrow casts was established based on: distinctive architecture, and size, which is more than twice the most common size range for large terrestrial invertebrate burrows. Comparison with other Upper Permian and Triassic tetrapod burrows allows us to identify three general morphological groups: (1) simple inclined burrows; (2) helical burrows; and (3) burrow network complexes, representing different behaviours. A study of tetrapod body fossils preserved within other Upper Permian and Triassic burrows shows that the Tarjados structures were most likely produced by non‐mammalian cynodonts. The environmental and climatic context suggests that aridity and seasonality played a fundamental role selecting burrowing behaviour in therapsids and that by the Early–Middle Triassic their burrowing behaviour attained a complexity comparable to modern mammals. □Argentina, behaviour, palaeoclimate, Permo‐Triassic, Tarjados Formation, Tetrapod burrows.  相似文献   

4.
An assemblage of abundant and well-preserved tetrapod footprints has been discovered in the Tanamert Member (T3) of the Triassic Timezgadiouine Formation (Argana basin, western High Atlas, Morocco). It is the first fossil record from T3. Surfaces from different localities show a uniform tetrapod ichnofauna that consists of chirotherian and small lacertoid forms. The chirotherians are assigned to the plexus Protochirotherium—Synaptichnium, their trackmakers interpreted as basal archosaurs. The lacertoid imprints show close affinities with Rhynchosauroides and may reflect archosauromorphs or lepidosauromorphs. Protochirotherium—Synaptichnium assemblages are characteristic of the Early Triassic and were known previously only from units of this age in central Europe. Biostratigraphically, the European record implies a wide-spread pre-Anisian Protochirotherium—Synaptichnium dominated assemblage preceding the first appearance of Chirotherium barthii near the Olenekian-Anisian boundary. The stratigraphic position of T3 between Late Permian (uppermost T2) and Middle Triassic (T4) and the European correlatives suggest an Early Triassic age of this unit. It is the first record of Early Triassic continental deposits in Morocco. The surfaces from T3 open up perspectives for further contributions to ecology, biogeography and locomotion of early archosaurs. Furthermore, excellent outcrops and quality of footprint preservation in the Argana basin offer a potential for clarification of ichnotaxonomic and biostratigraphic issues.  相似文献   

5.
Fossil plants are scarce in the Earliest Triassic marine deposits of western Guizhou and eastern Yunnan. Only Annularia shirakii, Lobatannularia sp., Paracalamites stenocostatus, Gigantopteris sp., Pecopteris sp. were reported from the base of the Kayitou Formation dated as Early Induan by marine fauna. Recently, we discovered numerous representatives of the genus Annalepis in the same Lowermost Triassic beds: A. latiloba, Abrevicystis, Aangusta, Annalepis spp. occur associated with a basal Triassic marine fauna. This discovery fills the biostratigraphic gap between the Late Permian “Gigantonoclea guizhouensis-Ullmannia cf. bronnii-Annularia pingloensis” and the late Lower Triassic “Neuropteridium–Albertia–Voltzia” assemblages reported from South China. It represents an important datum dealing with the very beginning of a new terrestrial flora installation after the Permian flora disappearance following the Permian–Triassic boundary mass extinction. This “starting point” of a new vegetal cover in South China is to be taken into account in reconstructing through space and time the settlement process of the Mesozoic floristic provinces.  相似文献   

6.
The greatest mass extinction occurred at the end of the Permian. Most records of the mass extinction are not from pelagic sediments, but from shallow-marine and terrestrial sediments. Although several pelagic sections that span the end-Permian mass extinction have been found, these sections contain few index fossils and are often discontinuous because of small faults. We found the index fossils Albaillella cf. triangularis (Radiolaria) in siliceous claystone beds, Hindeodus parvus (Conodont) in the overlying black claystone beds, and Neospathodus cf. cristagalli and Ns. waageni (Conodont) in the subsequent siliceous claystone beds in Akkamori section-2 in northern Japan. These fossils suggest that this section ranges from the late Permian to the Early Triassic, including the early Induan and Olenekian stages. Furthermore, the lithological changes in the section, i.e., starting from bedded chert through siliceous claystone and black claystone to siliceous claystone, are concordant with those of well-known Permian–Triassic pelagic sequences in Japan. There is no gap between each lithofacie of the Akkamori section-2. Critical lithological continuity between Upper Permian siliceous claystone beds and uppermost Permian to lowermost Triassic black claystone beds of the Akkamori section-2 was recognized by observing hand-polished specimens and thin sections. Such paleontological and sedimentological evidence implies that the Akkamori section-2 is a continuous pelagic section that records the end-Permian mass extinction event. The carbonaceous black claystone beds have high total organic carbon (TOC) concentrations (1.06–3.31 wt.%), suggesting oceanic anoxia at least deep and probably stable primary productivity. A decrease in radiolarian abundance from 26–563 to 0.27–20 specimens/cm2 coincided with an increase in TOC content from 0.01–0.16 to 1.06–3.31 wt.% at the boundary of the siliceous claystone and the overlying black claystone beds near the top of the Permian, implying that radiolarian extinction occurred at the end of the Permian coinciding with oceanic anoxia. Although TOC contents decreased in the early Olenekian (Smithian), radiolarian abundance did not increase at that time, indicating that radiolarian recovery was delayed by > 1.5 m.y.  相似文献   

7.
The negative shift in δ13C values of carbonate carbon at the Permian/Triassic boundary is one of the better documented geochemical signatures of a mass extinction event. The similar negative shift in δ13C values in organic carbon from Permian/Triassic boundary marine sediments in Austria and Canada is shown to occur also in marine and non‐marine sediments from Australian sedimentary basins. This negative shift in δ13C values is used to calibrate Australian sections lacking diagnostic faunal elements identifying the Permian/Triassic boundary. The minimum in the carbonate 87Sr/86Sr seawater curve from carbonates across the Guadalupian/Ochoan Stage boundary, mainly from North America, is shown to occur also in brachiopod calcite mainly from the Bowen Basin of eastern Australia, hence providing a second calibration point in the Australian sedimentary record. These two geochemical events support a model of a runaway greenhouse developing about the Permian/Triassic boundary; this is inferred to have contributed to the end‐Permian mass extinction.  相似文献   

8.
《Palaeoworld》2022,31(3):428-442
The Himalaya Terrane of southern Tibet exposes successive shallow-marine carbonate deposits from the Lower to Upper Triassic, and is a key region for studying the Triassic conodont biostratigraphy at the northern margin of the Indian Plate. On the basis of newly collected samples from the Kangshare and Laibuxi formations at the Tulong section, 11 conodont species of 7 genera were identified, and four conodont zones were established, namely, the Novispathodus abruptus Zone (lower Spathian, first reported in Tibet), the Columbitella jubata Zone (middle Spathian), the Triassospathodus symmetricus Zone (upper Spathian), and the Chiosella timorensis Zone (lowermost Anisian) in ascending order. The first occurrence (FO) of Chiosella timorensis indicates the Olenekian–Anisian boundary (OAB) at Bed 25, upper part of the Kangshare Formation. The regional and global correlation of these conodont zones is synthesized.  相似文献   

9.
10.
11.
福建永安丰海二叠系上部及三叠系底部的双壳类动物群*   总被引:2,自引:0,他引:2  
王明倩 《古生物学报》1993,32(4):458-476
系统研究了闽西永安丰海地区二叠系上部及三叠系下部的双壳类动物群面貌、层位及组合,并与国内外相当的地层进行了对比,阐明了该双壳动物群在二叠-三叠系界线划分中的地层意义.描述了15属24种(其中5新种)、5未定种.  相似文献   

12.
The Early Triassic is a critical interval for the study of recovery from the terminal Permian mass extinction, as there are small-scale extinction events, which may have contributed to the delayed recovery. The systematic measuring and sampling of a 12-m-thick section at the Mokrice locality in eastern Slovenia has resulted in the recovery of a conodont fauna from the Olenekian beds. Four conodont zones have been recognized. These zones are in ascending order as follows: the Hadrodontina aequabilis Zone, Platyvillosus corniger Zone, Platyvillosus regularis Zone, and Triassospathodus hungaricus Zone. These conodont zones confirm the proposed conodont biozonation sequence in western Slovenia and have correlation value especially for the western marginal Tethys. Multielement conodont apparatuses of Triassospathodus hungaricus and Platyvillosus regularis have been reconstructed based on conodont elements that were recently obtained from the Slovenian sections. Although the S2element was not found, the apparatus indicates that the conodont species “Spathognathodushungaricus should be assigned to the genus Triassospathodus.  相似文献   

13.
Spencer G. Lucas 《Ichnos》2013,20(1-2):5-38
Tetrapod footprints have a fossil record in rocks of Devonian-Neogene age. Three principal factors limit their use in biostratigraphy and biochronology (palichnostratigraphy): invalid ichnotaxa based on extramorphological variants, slow apparent evolutionary turnover rates and facies restrictions. The ichnotaxonomy of tetrapod footprints has generally been oversplit, largely due to a failure to appreciate extramorphological variation. Thus, many tetrapod footprint ichnogenera and most ichnospecies are useless phantom taxa that confound biostratigraphic correlation and biochronological subdivision. Tracks rarely allow identification of a genus or species known from the body fossil record. Indeed, almost all tetrapod footprint ichnogenera are equivalent to a family or a higher taxon (order, superorder, etc.) based on body fossils. This means that ichnogenera necessarily have much longer temporal ranges and therefore slower apparent evolutionary turnover rates than do body fossil genera. Because of this, footprints cannot provide as refined a subdivision of geological time as do body fossils. The tetrapod footprint record is much more facies controlled than the tetrapod body fossil record. The relatively narrow facies window for track preservation, and the fact that tracks are almost never transported, redeposited or reworked, limits the facies that can be correlated with any track-based biostratigraphy.

A Devonian-Neogene global biochronology based on tetrapod footprints generally resolves geologic time about 20 to 50 percent as well as does the tetrapod body fossil record. The following globally recognizable time intervals can be based on the track record: (1) Late Devonian; (2) Mississippian; (3) Early-Middle Pennsylvanian; (4) Late Pennsylvanian; (5) Early Permian; (6) Late Permian; (7) Early-Middle Triassic; (8) late Middle Triassic; (9) Late Triassic; (10) Early Jurassic; (11) Middle-Late Jurassic; (12) Early Cretaceous; (13) Late Cretaceous; (14) Paleogene; (15) Neogene. Tetrapod footprints are most valuable in establishing biostratigraphic datum points, and this is their primary value to understanding the stratigraphic (temporal) dimension of tetrapod evolution.  相似文献   

14.
15.
The Permo-Triassic terrestrial and freshwater tetrapod communities of Eastern Europe are reconstructed as food-webs. The Late Permian theriodont-dinocephalian community (Ocher, Mezen, Isheyevo) changes to a latest Permian theriodont-pareiasaur community (North Dvina, Vyazniki). After a major extinction, the Triassic thecodontian-dicynodont communities appear, a lystrosaurid one in the Early Triassic (Lower and ?Upper Vetluga), and a kannemeyerid one in the later Early Triassic (?Yarenga) and the Mid Triassic (Donguz, Bukobay). Similar stages are represented in the evolution of aquatic communities: the Late Permian temnospondyl community (Ocher, Isheyevo), the latest Permian chroniosuchian one (North Dvina, Vyazniki), the Lower and Middle Triassic new temnospondyl one (from Vetluga to Bukobay). The faunal changes in Eastern Europe are mirrored in other parts of the world, although there are some endemic Russian forms.  相似文献   

16.
New sampling on critical intervals of the uppermost Permian and Triassic successions of the Northern Karakorum Terrain in the Karakorum Range (Pakistan) has refined the stratigraphy. Two types of successions may be distinguished in the Karakorum Range: a carbonate platform succession, spanning the whole interval from Upper Permian to Upper Triassic, possibly with several gaps; and a basinal succession, deposited from the Middle Permian to Early Carnian (Late Triassic), when the carbonate platform prograded into the basin. With the approaching and later docking of the Karakorum Block against the Asian margin closing the Paleo-Tethys, a portion of Karakorum emerged while another part subsided as a fore-deep, receiving clastics from the emerging Cimmerian Range. Molassic sediments filled the basin, whilst shallow-water carbonates transgressed over the emerged carbonate platform sometime between the latest Triassic and the Pliensbachian (Early Jurassic), with Cimmerian deformation occurring to the north. The age control is provided by conodonts, with assemblages of late Wuchiapingian, Changhsingian, Induan (Griesbachian and Dienerian), late Olenekian, early Anisian, late Ladinian, and early Carnian ages, respectively. Some information on the section around the P/T boundary is provided by palynology and isotopic C13 values. The dating of the Norian/Rhaetian platform is provided by foraminifers.  相似文献   

17.
《Palaeoworld》2020,29(2):368-390
Sedimentary deposits of the Permian–Triassic transition are well-exposed in numerous outcrops of South China. Depending on the palaeogeographic positions of the sections, their lithofacies vary from fully marine, shallow marine, lagoonal, lacustrine, and fluvial to alluvial. In the present study, conchostracans (Crustacea: Branchiopoda) were newly collected from the continental deposits of the Kayitou and Jialingjiang formations around the Kangdian Highland elevated by the Emeishan Basalt in the southern Sichuan, western Guizhou, and northeastern Yunnan provinces. The conchostracan fauna of the Kayitou Formation is composed of Pseudestheria chatangensis, Euestheria fuyuanensis, and Euestheria sp. aff. E. gutta. These species occur in varying lithofacies types of different sections. In particular, the late Permian Pseudestheria chatangensis occurs in grey siltstones interbedded with pebbly sandstones, which are interpreted as lacustrine deposits. Euestheria fuyuanensis and Euestheria sp. aff. E. gutta were obtained from yellowish to greenish–grey clay- and siltstones, interpreted as coastal plain deposits. In comparison to other regions, occurrences of Euestheria gutta are indicative of an early Induan to Olenekian (Early Triassic) age. The fossil record of Euestheria fuyuanensis is so far restricted to a few occurrences in the Kayitou Formation of Southwest China and, therefore, using this species for long-distance biostratigraphic correlation requires further investigation. The distribution of late Permian pseudestheriid and Early Triassic euestheriid species in the respective sections possibly depends on the local lithofacies and, therefore, a diachronous age of the Kayitou Formation within the study area can be assumed. Additionally, Magniestheria sp. aff. M. mangaliensis and Magniestheria sp. aff. M. subcircularis were recorded in the Jialingjiang Formation, which represents a lithostratigraphic unit considered as late Early Triassic (Olenekian). Further investigations of both taxonomy and the real stratigraphic ranges of the conchostracan species as well as cross-correlations with other age data are recommended, in order to better constrain the position of the Permian–Triassic boundary and the specific timing of the terrestrial end-Permian mass extinction in continental deposits of Southwest China.  相似文献   

18.
近30年来,巴基斯坦盐岭地区的Wargal组和Chhidru组以及在喜马拉雅地区相当地层的地质时代被许多学者视为中二叠世(瓜达鲁普世)。根据华南与盐岭地区瓜达鲁普统和乐平统的牙形类化石带对比,可以确定Amb组和Wargal组底部的时代为瓜达鲁普世晚期,瓜达鲁普统与乐平统的界线位于Wargal组下部,吴家坪阶与长兴阶的界线位于Chhidru组的下部,而二叠与三叠系的界线位于Mianwali组下部的Kathwai段之内。我国西藏南部色龙群及相当地层含有与巴基斯坦盐岭地区Kalabagh段和Chhidru组可对比的乐平世腕足动物群以及二叠系—三叠系界线附近连续的牙形类化石带,由此可以推定色龙群的时代应为乐平世。  相似文献   

19.
由于志留泥盆纪之间没有发生明显的生物更替现象,所以泥盆纪最早期(Lochkovian)的珊瑚仍保留着浓厚的志留纪珊瑚的色彩。真正的泥盆纪类型的珊瑚是从早泥盆世中期(Pragian)才开始兴起的,至晚泥盆世早期(Frasnian)末惨遭绝灭。晚泥盆世晚期(Famennian)的珊瑚却与石炭纪珊瑚有着较为密切的关系。晚泥盆世的珊瑚经历了绝灭残存复苏3个发展阶段。泥盆石炭纪之交,泥盆纪最晚期(Strunian)的珊瑚再遭绝灭,至石炭纪初代之于Tournaisian型的珊瑚。正当华南锡矿山(相当于Famennian早期)的珊瑚群罹难的时刻,新疆北部洪古勒楞(亦相当于Famennian早期)却形成了F/F大绝灭后生物理想的避难所。  相似文献   

20.
Fossil remains of beetles are described from two Lower Triassic localities: Entala (Induan) and Tikhvinskoe (Olenekian). Only one beetle fossil was previously known from the Lower Triassic of Tikhvinskoe. The fossils are rather few and poorly preserved, but they are worth describing as finds rare for the Lower Triassic. Five fossils from Entala most probably belong to beetles of the same species of the formal genus Pseudochrysomelites. Beetles of this genus are especially abundant in deposits close to the Permian–Triassic boundary and can be considered “disaster taxa.” There are no known cases, either in the Permian or in the Middle–Upper Triassic, of a random sample of five specimens belonging to a single species. This suggests that in the Entala oryctocenosis the species diversity of beetles is extremely low. All three beetle fossils found in Tikhvinskoe belong to beetles of different species, showing that diversity had already started to increase. However, it remained low, and all fossils belong to the formal family Schizocoleidae, and two of the three belong to the same genus, Pseudochrysomelites. The Khei-Yaga locality, which immediately follows Tikhvinskoe in time (topmost Olenekian or early Anisian), already contains beetles of the families Asiocoleidae and Permosynidae. In the Lower Anisian of the Buntsandstein, such typical Mesozoic beetles as Cupedidae and Coptoclavidae have been recorded. The appearance of such advanced beetles as early as the Lower Anisian suggests that the famous Permian–Triassic crisis was not as deep as it is usually believed, and many beetles survived it, disappearing, however, from the fossil record in the Early Triassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号