首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
目的:构建重组PP2R1A基因的逆转录病毒感染HEKTER细胞,观察其定位,验证表达,研究过表达PP2R1A对细胞生长及周期的影响。方法:逆转录病毒载体pMIG-Flag-PP2R1A-IRES-GFP与Pcl10A1瞬时共转染293T细胞,收集病毒感染HEKTER细胞,在荧光显微镜下观察定位,标记荧光单克隆。挑取不同表达强度单克隆做western验证PP2R1A蛋白表达。运用流式细胞分析、体外创伤试验及生长曲线试验研究单克隆细胞的增殖及周期。结果:获得了过表达PP2R1A的单克隆细胞株,PP2R1A在细胞内广泛表达,结合western及细胞试验证实PP2R1A高表达阻滞细胞周期并减慢细胞生长。结论:PP2R1A是丝苏氨酸蛋白磷酸酶PP2A的结构A亚基的a亚型,在细胞内广泛表达。本文成功构建了表达PP2R1A的细胞株,研究发现PP2R1A高表达会影响细胞生长及细胞周期,减缓了细胞增殖。为进一步深入研究PP2R1A对PP2A全酶活性及功能、细胞转化的影响奠定了重要的实验基础。  相似文献   

2.
3.
Phospholipase D (PLD) exerts broad biological functions in eukaryotes through regulating downstream effectors by its product, phosphatidic acid (PA). Protein kinases and phosphatases, such as mammalian target of rapa- mycin (mTOR), Protein Phosphatase 1 (PP1) and Protein Phosphatase 2C (PP2C), are PA-binding proteins that execute crucial regulatory functions in both animals and plants. PA participates in many signaling pathways by modulating the enzymatic activity and/or subcellular localization of bound proteins. In this study, we demonstrated that PLD-derived PA interacts with the scaffolding A1 subunit of Protein Phosphatase 2A (PP2A) and regulates PP2A-mediated PIN1 dephos- phorylation in Arabidopsis. Genetic and pharmacological studies showed that both PA and PP2A participate in the regu- lation of auxin distribution. In addition, both the phosphorylation status and polar localization of PIN1 protein were affected by PLD inhibitors, Exogenous PA triggered the membrane accumulation of PP2AA1 and enhanced the PP2A activity at membrane, while PLD inhibition resulted in the reduced endosomal localization and perinuclear aggregation of PP2AA1. These results demonstrate the important role of PLD-derived PA in normal PP2A-mediated PIN dephosphoryl- ation and reveal a novel mechanism, in which PA recruits PP2AA1 to the membrane system and regulates PP2A function on membrane-targeted proteins. As PA and PP2A are conserved among eukaryotes, other organisms might use similar mechanisms to mediate multiple biological processes.  相似文献   

4.
目的 哺乳动物附睾精子成熟、运动能力的获得与维持是保证精子执行正常功能、完成受精的前提和基础,但调控此过程的机制仍未完全阐明.SRC激酶参与小鼠精子获能的调控,Ser/Thr磷酸酶PP1γ2/PP2A是调控小鼠精子成熟、运动性获得的关键酶,但二者是否具有相互作用且这种相互作用是否调控着精子运动并不清楚.为此,本研究探究...  相似文献   

5.
PP2A的结构和功能新进展   总被引:1,自引:0,他引:1  
PP2A是一种丝/苏氨酸磷蛋白磷酸酶,通过可逆性磷酸化使已磷酸化激活的蛋白质脱磷酸,在信号传导中承担负性调节的作用。由一个催化亚基和两个调节亚基构成。:PP2A是一种多功能性酶,底物为众多体内的转录因子和蛋白激酶;酵母,果蝇和小鼠的动物模型的研究中已经发现PP2A在细胞周期调控,形态以及发育中的作用;同时它又在信号转导的级联反应中与其他磷酸化酶和激酶相互作用,构成调节大分子调控下游信号的转导。催化亚基活性主要由转录后水平磷酸化和甲基化的状态调控。  相似文献   

6.
目的: 探讨复制蛋白A1(RPA1)沉默对人鼻咽癌CNE-2R细胞侵袭、迁移及细胞周期的影响。方法: 采用shRNA技术构建RPA1低表达的CNE-2R细胞模型并通过RT-PCR和Western blot实验验证。选用空白对照组(CNE-2R)、阴性对照组(NC-shRNA)、RPA1低表达组(RPA1-shRNA)3组细胞完成后续实验,通过CCK8和克隆形成实验检测细胞增殖能力、Transwell实验检测侵袭能力、划痕实验检测迁移能力,流式细胞术检测细胞周期;Western blot实验检测Chk2、p-Chk2、Cdc25c和p-cdc25c蛋白的表达。结果: 与CNE-2R和NC-shRNA组比较,RPA1-shRNA组细胞的RPA1mRNA和蛋白质均显著降低(P<0.01和<0.05);RPA1-shRNA组组细胞的增殖、侵袭、迁移能力显著下降(P均< 0.05),细胞周期被阻滞在G2/M期(P<0.01);RPA1-shRNA组细胞Chk2、Cdc25c的表达低于CNE-2R和NC-shRNA组细胞(P<0.05), 而p-Chk2、p-cdc25c的表达高于其它两组(P <0.05)结论: RPA1低表达抑制辐射抵抗人鼻咽癌CNE-2R细胞的增殖、迁移以及使细胞周期阻滞于G2/M期。  相似文献   

7.
蛋白磷酸酶2A(PP2A)是由36 k Da的催化亚基C(PP2Ac)和65 k Da的结构亚基A(PP2Aα/β)一起组成PP2A的核心酶,并且和各种不同的调节亚基B形成具有不同功能的PP2A全酶复合体。在细胞中PP2A发挥着重要作用,特别是在抑制肿瘤的形成当中,编码PP2Aα/β基因的突变将导致肿瘤的形成和其他疾病。当非小细胞肺癌细胞H1299中过表达PP2A-Aα时,细胞生长被抑制,细胞周期停留在G0/G1期,致瘤能力也同时被抑制。进一步研究证明当PP2A-Aα过表达时,Akt被去磷酸化失活使Skp2的表达下调,从而导致细胞周期抑制因子p27kip1的表达上调。肿瘤细胞软琼脂克隆形成实验的结果表明过表达PP2A-Aα之后H1299细胞的锚定非依赖性生长能力明显的降低,形成的克隆细胞团也较小,这些结果和裸鼠成瘤实验的结果是一致的。  相似文献   

8.
目的:在肝癌细胞Hep G2中过表达外源NAIF1(核凋亡诱导因子1),探讨NAIF1的亚细胞定位以及对Hep G2增殖和迁移能力的影响。方法:以真核表达质粒p EGFP-N1为对照组,p EGFP-N1-NAIF1为实验组,瞬时转染肝癌细胞Hep G2,利用免疫印迹方法检测NAIF1蛋白表达效率;以DAPI染核,荧光显微镜下观察绿色荧光蛋白定位,确定NAIF1的亚细胞定位;通过MTT方法绘制细胞增殖曲线;通过transwell小室法检测NAIF1对Hep G2迁移能力的影响。结果:在肝癌细胞Hep G2中,外源表达NAIF1主要定位于细胞核;与对照组Hep G2/p EGFP-N1相比,Hep G2/p EGFP-N1-NAIF1的细胞增殖、迁移能力下降(P<0.05)。结论:外源表达NAIF1蛋白定位于Hep G2细胞核,过表达NAIF1抑制Hep G2的细胞增殖与迁移能力,NAIF1可能作为肝癌治疗的潜在靶点。  相似文献   

9.
目的探讨细胞周期素G1和G2在膀胱移行细胞癌(尿路上皮癌)中的表达及临床意义。方法收集武汉大学人民医院病理科2000-2006年有完整临床和病理资料的膀胱移行细胞癌存档蜡块50例和5例癌旁组织,采用免疫组织化学S-P法检测50例膀胱移行细胞癌和5例癌旁组织中细胞周期素G1和G2的表达水平。采用HPIAS-1000高清晰度彩色病理图文报告管理系统,对细胞周期素G1和G2的表达进行定量分析,并用SPSS11.5软件对各组免疫组织化学反应阳性颗粒的平均光密度、阳性面积率做单因素方差分析和SNK(q)检验。结果细胞周期素G1在膀胱移行细胞癌中呈高表达,癌旁组织中呈低表达。而细胞周期素G2在膀胱移行细胞癌中呈低表达,癌旁组织中呈高表达。膀胱移行细胞癌与癌旁组织相比,差异有显著性(P〈0.05)。随着移行细胞癌组织中细胞周期素G1表达的增高,周期素G2的表达却显著下降,两者呈显著负相关(P〈0.01)。结论细胞周期素G1和G2在膀胱移行细胞癌与癌旁组织中对细胞周期调控和/或DNA修复起了重要作用,并参与了诱导细胞凋亡的过程。  相似文献   

10.
通过3′-RACE及5′-RACE技术克隆得到了金鱼蛋白磷酸酶2A(protein phosphatase2A,PP2A)调节亚基B′家族δ(Delta)基因的cDNA全序列.结果显示,金鱼δ基因cDNA全长2415bp,编码一个含555个氨基酸的蛋白.序列分析表明,该基因编码的蛋白与已知其他物种对应的B′家族蛋白质均有着很高的同源性.RT-PCR分析证明,该基因mRNA表达水平在大脑中为最高,肝脏、精巢、卵巢、肾脏和鳃中次之,鳍中最少.在不同胚胎时期中,两细胞期、多细胞期、囊胚期和原肠胚期表达最高,其他时期相对较低.在蛋白水平上,精巢、卵巢、大脑和心脏中最高,肝脏中次之,肾脏、鳃和鳍中最少.在胚胎中,两细胞期、多细胞期、囊胚期、原肠胚期和神经胚期及视原基期表达最高,脑泡分化和眼色素期表达量最少.由此可以推测PP2AB′-δ基因在金鱼不同组织和胚胎发育的不同时期中可能起着多种重要作用.  相似文献   

11.
Entry into mitosis requires the phosphorylation of multiple substrates by cyclin B-Cdk1, while exit from mitosis requires their dephosphorylation, which depends largely on the phosphatase PP2A in complex with its B55 regulatory subunit (Tws in Drosophila). At mitotic entry, cyclin B-Cdk1 activates the Greatwall kinase, which phosphorylates Endosulfine proteins, thereby activating their ability to inhibit PP2A-B55 competitively. The inhibition of PP2A-B55 at mitotic entry facilitates the accumulation of phosphorylated Cdk1 substrates. The coordination of these enzymes involves major changes in their localization. In interphase, Gwl is nuclear while PP2A-B55 is cytoplasmic. We recently showed that Gwl suddenly relocalizes from the nucleus to the cytoplasm in prophase, before nuclear envelope breakdown and that this controlled localization of Gwl is required for its function. We and others have shown that phosphorylation of Gwl by cyclin B-Cdk1 at multiple sites is required for its nuclear exclusion, but the precise mechanisms remained unclear. In addition, how Gwl returns to its nuclear localization was not explored. Here we show that cyclin B-Cdk1 directly inactivates a Nuclear Localization Signal in the central region of Gwl. This phosphorylation facilitates the cytoplasmic retention of Gwl, which is exported to the cytoplasm in a Crm1-dependent manner. In addition, we show that PP2A-Tws promotes the return of Gwl to its nuclear localization during cytokinesis. Our results indicate that the cyclic changes in Gwl localization at mitotic entry and exit are directly regulated by the antagonistic cyclin B-Cdk1 and PP2A-Tws enzymes.  相似文献   

12.
To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation. [BMB Reports 2013; 46(6): 289-294]  相似文献   

13.
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.  相似文献   

14.
Mesothelioma is an aggressive tumor that affects thousands of people every year. The therapeutic options for patients are limited; hence, a better understanding of mesothelioma biology is crucial to improve patient survival. To find new molecular targets and therapeutic strategies related to the protein phosphatase 2A (PP2A) network, we analyzed the gene expression of known PP2A inhibitors in mesothelioma patient samples. Our analysis disclosed a general overexpression of all PP2A-negative regulators in mesothelioma patients. Moreover, the expression of ANP32E and CIP2A genes, increased in 16% and 11% of cases, positively correlates with the ones of all the other PP2A regulators and the ones of the main cyclins and CDKs, suggesting the existence of a feed-forward loop that might contribute to the mesothelioma progression via PP2A inactivation. Overall, our study indicates the existence of a strategic and targetable axis between PP2A inhibitors (ANP32E and CIP2A) and cell cycle regulators (cyclin B2/CDK1) and provides a valuable rationale for using a personalized combinational therapy approach to improve mesothelioma patient survival.  相似文献   

15.
In their active hypophosphorylated state, members of the retinoblastoma family of pocket proteins negatively regulate cell cycle progression at least in part by repressing expression of E2F-dependent genes. Mitogen-dependent activation of G1 and G1/S Cyclin Dependent Kinases (CDKs) results in coordinated hyperphosphorylation and inactivation of these proteins, which no longer bind and repress E2Fs. S and G2/M CDKs maintain pocket protein hyperphosphorylated through the end of mitosis. The inactivating action of inducible CDKs is opposed by the Ser/Thr protein phosphatases PP2A and PP1. Various trimeric PP2A holoenzymes have been implicated in dephosphorylation of pocket proteins in response to specific cellular signals and stresses or as part of an equilibrium with CDKs throughout the cell cycle. PP1 has specifically been implicated in dephosphorylation of pRB in late mitosis and early G1. This review is particularly focused on the emerging role of PP2A as a major hub for integration of growth suppressor signals that require rapid inactivation of pocket proteins. Of note, activation of particular PP2A holoenzymes triggers differential activation of pocket proteins in the presence of active CDKs.  相似文献   

16.
In their active hypophosphorylated state, members of the retinoblastoma family of pocket proteins negatively regulate cell cycle progression at least in part by repressing expression of E2F-dependent genes. Mitogen-dependent activation of G1 and G1/S Cyclin Dependent Kinases (CDKs) results in coordinated hyperphosphorylation and inactivation of these proteins, which no longer bind and repress E2Fs. S and G2/M CDKs maintain pocket protein hyperphosphorylated through the end of mitosis. The inactivating action of inducible CDKs is opposed by the Ser/Thr protein phosphatases PP2A and PP1. Various trimeric PP2A holoenzymes have been implicated in dephosphorylation of pocket proteins in response to specific cellular signals and stresses or as part of an equilibrium with CDKs throughout the cell cycle. PP1 has specifically been implicated in dephosphorylation of pRB in late mitosis and early G1. This review is particularly focused on the emerging role of PP2A as a major hub for integration of growth suppressor signals that require rapid inactivation of pocket proteins. Of note, activation of particular PP2A holoenzymes triggers differential activation of pocket proteins in the presence of active CDKs.  相似文献   

17.
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.  相似文献   

18.
19.
Protein phosphorylation and dephosphorylation are both important for multiple steps in the splicing pathway. Members of the PP1 and PP2A subfamilies of phospho-serine/threonine phosphatases play essential but redundant roles in the second step of the splicing reaction. PP6, a member of the PP2A subfamily, is the mammalian homolog of yeast Sit4p and ppe1, which are involved in cell cycle regulation; however, the involvement of PP6 in the splicing pathway remains unclear. Here we show that PP2A family members physically associate with the spliceosome throughout the splicing reaction. PP2A holoenzyme and PP6 were found stably associated with U1 snRNP. Together our findings indicate that these phosphatases regulate splicing catalysis involving U1 snRNP and suggest an important evolutionary conserved role of PP2A family phosphatases in pre-mRNA splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号