首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
血红素氧合酶-1(Hene Oxygenase-1)是一种氧化应激反应蛋白,广泛存在全身各组织器官。HO-1及催化产物组成了重要的内源性保护系统,具有调控炎症、抗氧化损伤及抗细胞凋亡等作用,对于组织器官具有保护作用。肺纤维化发病机制复杂,氧化应激是肺纤维化的致病机制之一。HO-1是一种重要的抗氧化剂,其通过多种途径参与致病,在肺纤维化致病过程中发挥重要作用。  相似文献   

2.
血红素加氧酶(heme oxygenase,HO)是最广泛存在的抗氧化防御酶之一。血红素加氧酶-1(HO-1)是HO重要的同工酶,为一种氧化应激反应蛋白,具有机体保护作用。HO-1与HO分解产物组成机体重要的内源性保护系统,具有抗氧化损伤、抗炎及抗细胞凋亡等作用。支气管肺发育不良(bronchopulmonary dysplasia,BPD)是严重影响早产儿生存及远期生活质量的慢性肺部疾病,其发病机制复杂,氧化应激是其主要发病机制之一。HO-1作为一种重要的抗氧化剂,在BPD的发病过程中发挥重要作用。  相似文献   

3.
肌肉是机体具有收缩性的组织,它的主要功能是通过力量产生引起机体各部位的运动.肌肉萎缩是肌肉质量和力量丧失,肌肉活动功能减退的一种反应,在许多生理和病理情况下都可以出现.肌肉萎缩时不仅表现为肌肉结构形态的变化,如肌肉的重量和体积减少,肌纤维类型改变,最主要是肌肉蛋白质水解作用增强、合成减少.氧化应激是机体氧化产物超过机体抗氧化防御能力一种应激状态,可以导致细胞、组织和器官的损伤.大量证据表明,氧化应激参与肌肉萎缩的致病过程.探讨氧化应激在肌肉萎缩中的作用,对了解肌肉萎缩的致病机制有重要作用.本文对氧化应激和肌肉萎缩的关系,氧化应激参与肌肉萎缩时的蛋白质水解途径,以及连接氧化应激和肌肉萎缩的两个重要细胞信号转导通路做一简要综述.  相似文献   

4.
血红素氧合酶-1(heme oxygenase,HO-1)是细胞内的一种可诱导的保护性酶,具有抗氧化、抗炎、抗凋亡等作用。它在肿瘤细胞(如肝癌细胞)中的表达一般会增强,能影响肿瘤细胞的增殖等生物学行为。一方面,HO-1能促进肝癌细胞的生长和扩散,并通过减少氧化应激产生的氧自由基而对肝癌细胞发挥保护作用,使肝癌细胞对治疗产生抵抗性。另一方面,HO-1使肝移植治疗晚期肝癌中的免疫排斥降低,提高肝移植的成功率。本文简要概括了HO-1对肝癌发生进展的影响,并阐述了HO-1在肝移植方面的重要作用,这可能对抗肝癌药物的研发及肝癌的治疗具有一定的指导意义。  相似文献   

5.
器官移植术中及术后移植器官的缺血再灌注损伤(ischemia-repeffusion injury,IRI)和免疫排斥反应一直困扰着外科医生.血红素加氧酶-1(heme oxygenase-1,HO-1)是血红素代谢过程中的限速酶,广泛分布于哺乳动物的各种组织细胞中.血红素在它的催化下降解代谢为一氧化碳(CO)、胆绿素和游离铁离子.HO-1在氧化应激、炎性反应、低氧和缺血等状态下均能高度表达.HO-1及其催化血红素代谢产物主要通过抗炎性反应、抗氧化反应、调节同种异体反应性T细胞的活性及增殖、抗内皮细胞凋亡、抑制内皮细胞活化等作用机制,对移植器官起到抗IRI和抗免疫排斥作用,从而增加移植器官成活率及延长其存活时间.  相似文献   

6.
血红素加氧酶1(HO-1)最初被鉴定为血红素分解代谢过程中的限速酶,近20年来,其抗炎、抗细胞凋亡、抗增殖和抗氧化功能被逐渐揭示。现有研究认为,HO-1是一种广泛存在的抗损伤效应信号分子,属于热激蛋白家族,直接参与代谢血红素并生成一氧化碳、胆红素和游离铁。正常情况下,HO-1在大多数组织内呈低水平表达,同时可被多种应激环境和病理学改变诱发表达。HO-1不仅可通过其本身发挥损伤保护效应,其代谢分解产物也能够发挥在多种疾病状态下的重要保护作用。本文重点综述HO-1及其分解产物在各种不同类型心血管疾病病变反应中的保护性作用及机制。  相似文献   

7.
来源于出血后血红蛋白或衰老细胞释放的血红素能够诱导血红素氧合酶-1(HO-1,HSP-1)的表达。血红素氧合酶-1催化血红素生成气体介质一氧化碳,铁和胆绿素。胆绿素和它的代谢产物胆红素都是有效的抗氧化剂;同时铁诱导的铁蛋白和CO也发挥着各自的保护作用。因此,HO-1的表达被看作一种重要的保护机制。在各种不同的脑病理改变发生后,如蛛网膜下腔出血,脑梗死,创伤性脑损伤及神经变性疾病,HO-1明显表达于小胶质细胞,星形细胞和神经元细胞,从而发挥其重要脑保护作用。  相似文献   

8.
来源于出血后血红蛋白或衰老细胞释放的血红素能够诱导血红素氧合酶-1(HO-1,HSP-1)的表达。血红素氧合酶-1催化血红素生成气体介质一氧化碳,铁和胆绿素。胆绿素和它的代谢产物胆红素都是有效的抗氧化剂;同时铁诱导的铁蛋白和CO也发挥着各自的保护作用。因此,HO-1的表达被看作一种重要的保护机制。在各种不同的脑病理改变发生后,如蛛网膜下腔出血,脑梗死,创伤性脑损伤及神经变性疾病,HO-1明显表达于小胶质细胞,星形细胞和神经元细胞,从而发挥其重要脑保护作用。  相似文献   

9.
血红素加氧酶-1(HO-1)是血红素分解代谢的关键酶,是一种广泛存在于人体各组织器官的抗氧化防御酶,在多种刺激条件下发挥抗氧化、抗炎及抑制细胞凋亡等重要生物学作用。近年研究发现,HO-1在多种人体肿瘤组织中表达增强,参与肿瘤血管生成、增殖、转移等多种生物学过程,与肿瘤的发生发展密切相关。同时,HO-1在化疗、放疗等应激条件下表达上调,可增强肿瘤的耐药性,使肿瘤对治疗的敏感性降低。我们简要综述HO-1在肿瘤中的表达及其对肿瘤发生、发展的影响。  相似文献   

10.
肺纤维化(pulmonary fibrosis, PF)是临床常见的一种慢性进行性呼吸系统疾病,以中晚期出现肺组织的纤维化为病变特征。由于肺纤维化病因复杂,其发病机制至今仍不明确,这也成为该疾病治疗的最大难点,并且由于该病的高死亡率,寻求有效的治疗方法迫在眉睫。随着现代分子生物学技术的广泛应用以及对该疾病的发生机制和病理生理变化研究的不断深入,发现AMPK、mTOR和JNK等相关信号通路以及ECM沉积和氧化应激等在肺纤维化发病机制中起着重要作用。因此,针对这些通路中的相关分子的靶点治疗将成为肺纤维化治疗的新趋势。本文旨在对肺纤维化治疗相关的细胞因子以及micro RNA分子靶点研究进展做一总结,为防治肺纤维化提供新的理论依据,同时为临床诊疗提供参考。  相似文献   

11.
Oxidative stress with reactive oxygen species (ROS) can contribute to the pathogenesis of idiopathic pulmonary fibrosis. Antioxidant enzymes, such as extracellular superoxide dismutase (ECSOD), may modulate the injury and repair components of the fibrogenic response. Here we determined whether ECSOD could attenuate experimental TGF-β1-induced persistent lung fibrosis. In this study, primary human lung fibroblasts, MRC-5 fibroblasts and A549 epithelial cells were exposed to recombinant active TGF-β1. An adenovirus vector that expresses human ECSOD (AdECSOD) was constructed and rats were endotracheally intubated with an adenoviral vector encoding active TGF-β1 (AdTGF-β1), AdECSOD or a control vector (AdDL70) alone or in combinations AdTGF-β1/AdDL70 or AdTGF-β1/AdECSOD. TGF-β1 alone induced fibrotic responses and significantly down-regulated endogenous ECSOD gene expression both in vitro and in vivo and caused oxidative stress in rat lung, associated with increased levels of activated TGF-β1 in lung fluid and tissue. ECSOD protein was markedly reduced in the interstitium and fibrotic foci in TGF-β1 induced experimental lung fibrosis. The fibrotic response caused by AdTGF-β1 was markedly attenuated by concomitant gene transfer using AdECSOD, detected by lung function measurements, histologic and morphometric analysis, hydroxyproline content and fibrosis-related gene expression. In addition, the oxidative stress and increased presence of activated TGF-β1 in rat lung induced by AdTGF-β1 was significantly reduced by ECSOD gene transfer. These findings suggest a substantial role for oxidative stress in the pathogenesis of TGF-β1 driven persistent pulmonary fibrosis and enhanced presence of ECSOD can inhibit latent TGF-β1 activation by ROS and diminish subsequent fibrotic responses.  相似文献   

12.
Heme is an important prosthetic molecule for various hemoproteins and serves important function in living aerobic organisms. But degradation of hemoprotein, for example, hemoglobin during different pathological conditions leads to the release of heme, which is very toxic as it induces oxidative stress and inflammation due to its pro-oxidant nature. Thus, synthesis of compound that will detoxify free heme by interacting with it would be fruitful for the management of heme-induced pathogenesis. Here, we report the synthesis of a novel natural product arborinine and some other acridone derivatives, which interact with free heme. These acridones in vitro block heme-mediated protein oxidation and degradation, markers for heme-induced oxidative stress.  相似文献   

13.
Bronchopulmonary dysplasia (BPD) is characterized by simplified alveolarization and arrested vascular development of the lung with associated evidence of endothelial dysfunction, inflammation, increased oxidative damage, and iron deposition. Heme oxygenase-1 (HO-1) has been reported to be protective in the pathogenesis of diseases of inflammatory and oxidative etiology. Because HO-1 is involved in the response to oxidative stress produced by hyperoxia and is critical for cellular heme and iron homeostasis, it could play a protective role in BPD. Therefore, we investigated the effect of HO-1 in hyperoxia-induced lung injury using a neonatal transgenic mouse model with constitutive lung-specific HO-1 overexpression. Hyperoxia triggered an increase in pulmonary inflammation, arterial remodeling, and right ventricular hypertrophy that was attenuated by HO-1 overexpression. In addition, hyperoxia led to pulmonary edema, hemosiderosis, and a decrease in blood vessel number, all of which were markedly improved in HO-1 overexpressing mice. The protective vascular response may be mediated at least in part by carbon monoxide, due to its anti-inflammatory, antiproliferative, and antiapoptotic properties. HO-1 overexpression, however, did not prevent alveolar simplification nor altered the levels of ferritin and lactoferrin, proteins involved in iron binding and transport. Thus the protective mechanisms elicited by HO-1 overexpression primarily preserve vascular growth and barrier function through iron-independent, antioxidant, and anti-inflammatory pathways.  相似文献   

14.
Salvianolic acid B (SalB) is one of the most bioactive components extracted from Salvia miltiorrhiza, and its antioxidant capacity corresponds with its protective effects against cell injury from oxidative stress. The aim of the present study was to evaluate the effect of SalB on experimental pulmonary fibrosis and its ability to ameliorate the oxidative/antioxidative imbalance during fibrosis pathogenesis. The anti-fibrotic activity of SalB was first confirmed in Transforming growth factor β1(TGF-β1)-stimulated MRC-5 cells. The protection of SalB against oxidative stress during fibrogenesis in vitro was verified by detecting ROS production, the levels of glutathione (GSH) and malondialdehyde (MDA). The Western blot and PCR results indicated that SalB could up-regulate nuclear factor erythroid-derived 2-like 2 (Nrf2) at both the protein and mRNA levels and induce Nrf2 nuclear translocation in vitro, which may be the mechanism underlying the anti-fibrotic capacity of SalB. Furthermore, the anti-fibrotic and antioxidant capacities of SalB in vivo were confirmed in rats with BLM-induced pulmonary fibrosis. The immunohistochemistry results showed that Nrf2 was absent in fibroblastic foci (FF) areas, while the SalB treatment could increase the expression of Nrf2 in lung tissues, especially in FF areas.  相似文献   

15.
Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory/interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis is not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria/NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways is examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

16.
Pulmonary ischemia-reperfusion (IR) injury may result from trauma, atherosclerosis, pulmonary embolism, pulmonary thrombosis and surgical procedures such as cardiopulmonary bypass and lung transplantation. IR injury induces oxidative stress characterized by formation of reactive oxygen (ROS) and reactive nitrogen species (RNS). Nitric oxide (NO) overproduction via inducible nitric oxide synthase (iNOS) is an important component in the pathogenesis of IR. Reaction of NO with ROS forms RNS as secondary reactive products, which cause platelet activation and upregulation of adhesion molecules. This mechanism of injury is particularly important during pulmonary IR with increased iNOS activity in the presence of oxidative stress. Platelet-endothelial interactions may play an important role in causing pulmonary arteriolar vasoconstriction and post-ischemic alveolar hypoperfusion. This review discusses the relationship between ROS, RNS, P-selectin, and platelet-arteriolar wall interactions and proposes a hypothesis for their role in microvascular responses during pulmonary IR.  相似文献   

17.
18.
Heat shock proteins (HSP) or stress proteins serve as biomarkers to identify the contribution of stress situations underlying the pathogenesis of degenerative diseases of the CNS. We have analyzed by immunoblot technique the constitutive and inducible occurrence of stress proteins in cultured rat brain oligodendrocytes subjected to heat shock or oxidative stress exerted by hydrogen peroxide, or a combination of both. The data demonstrate that oligodendrocytes constitutively express HSP32, HSP60 and the cognate form of the HSP70 family of proteins, HSC70. After heat shock, HSP25, alpha B-crystallin and HSP70 were up-regulated, while after oxidative stress the specific induction of HSP32 and alpha B-crystallin was observed. HSP32 represents heme oxygenase 1 (HO-1), a small stress protein with enzymatic activity involved in the oxidative degradation of heme which participates in iron metabolism. The presence of the iron chelators phenanthroline or deferoxamine (DFO), which previously has been shown to protect oligodendrocytes from oxidative stress-induced onset of apoptosis, caused a marked stimulation of HSP32 without affecting HSP70. This indicates that DFO possibly exerts its protective role by directly influencing the antioxidant capacity of HO-1. In summary, HSP in oligodendrocytes are differentially stimulated by heat stress and oxidative stress. Heme oxygenase-1 has been linked to inflammatory processes and oxidative stress, its specific up-regulation after oxidative stress in oligodendrocytes suggests that it is an ideal candidate to investigate the involvement of oxidative stress in demyelinating diseases.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号