首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed 21 new microsatellites in the model diploid perennial species Fragaria vesca from an enriched genomic library developed using F. vesca 'Ruegen'. The transferability of the primer pairs to other Fragaria species was high; all 31 primer pairs produced amplicons in 3 accessions of the octoploid strawberry Fragaria x ananassa, whereas 24 (77%) amplified a product in 7 other diploid Fragaria species. We analysed the allelic variation among 15 F. vesca accessions using the 21 microsatellites reported here and 10 F. vesca microsatellites described previously. The level of polymorphism detected at these microsatellite loci was high; five loci were monomorphic. Only two microsatellites were required to unambiguously discriminate among the 15 F. vesca accessions. A preliminary survey of segregation in an F2 progeny indicates that 20 of the 26 polymorphic loci (77%) could be mapped.  相似文献   

2.
3.
4.
We have identified a set of plants (the bin set) to permit "selective" or "bin" mapping using the diploid strawberry mapping population FV x FN, derived from the F2 cross F. vesca 815 x F. nubicola 601, which has been used to develop the Fragaria reference map. The bin set consists of 8 plants: the F. vesca 815 parent, the F1 hybrid individual, and 6 seedlings of the F2 population. This bin set divides the 578 cM of the diploid Fragaria genome into 46 bins, the largest mapping bin being 26 cM in length and the average bin size being 12.6 cM. To validate the FV x FN bin set, we used it to locate 103 loci into bins on the FV x FN map. These loci comprised 61 previously described SSRs, 38 new SSRs developed in this investigation from Fragaria x ananassa genomic DNA, EST and gene sequences, and 4 ripening-related genes developed for Prunus. The 103 markers were located to bins on all 7 linkage groups of the Fragaria map and a new mapping bin was identified with the novel markers, demonstrating that the map covers the majority of the diploid Fragaria genome and that the 6 bin-set seedlings selected were appropriate for bin mapping using this progeny.  相似文献   

5.
6.
7.
Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), whereas less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, SEASONAL FLOWERING LOCUS, which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent long-day suppression of flowering, and the early flowering that then occurs under long days is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.  相似文献   

8.
Macrosynteny and colinearity between Fragaria (strawberry) species showing extreme levels of ploidy have been studied through comparative genetic mapping between the octoploid cultivated strawberry (F. xananassa) and its diploid relatives. A comprehensive map of the octoploid strawberry, in which almost all linkage groups are ranged into the seven expected homoeologous groups was obtained, thus providing the first reference map for the octoploid Fragaria. High levels of conserved macrosynteny and colinearity were observed between homo(eo)logous linkage groups and between the octoploid homoeologous groups and their corresponding diploid linkage groups. These results reveal that the polyploidization events that took place along the evolution of the Fragaria genus and the more recent juxtaposition of two octoploid strawberry genomes in the cultivated strawberry did not trigger any major chromosomal rearrangements in genomes involved in F. xananassa. They further suggest the existence of a close relationship between the diploid Fragaria genomes. In addition, despite the possible existence of residual levels of polysomic segregation suggested by the observation of large linkage groups in coupling phase only, the prevalence of linkage groups in coupling/repulsion phase clearly demonstrates that the meiotic behavior is mainly disomic in the cultivated strawberry.  相似文献   

9.
A tetraploid (2n = 28) clone of Fragaria from SW Finland is described. The clone is true-breeding with respect to tetraploidy. The tetraploid strawberry shows RFLP similarity with F. vesca , a common species, and, to a lesser extent, with F. viridis , a southern species, whose nearest reported occurrence was about 80 km away during the 1940s. The following alternatives are considered as possible reasons for the tetraploidy: unreduced gametes in an interspecific hybrid or hybrid derivative; hybridization followed by induction of tetraploidy either by viruses, or by industrial pollutants, e.g. chlorophenols and their congener compounds in the soil. The original seed might also have been brought from abroad unintentionally with other seeds for field trials which have been conducted since 1928 in the vicinity. A hexaploid ( F. moschata )× diploid hybrid leads directly to tetraploidy and a tetraploid derivative from an octoploid ( F . × ananassa ) × diploid hybridization can be obtained but the current tetraploid has different morphology.  相似文献   

10.
激光和高压静电场对草莓种间杂交不亲和性的影响   总被引:7,自引:2,他引:5  
以明晶等4个栽培品种及森林草莓、黄毛草莓和弗州草莓等3个野生种和类型为试材进行了该项研究。结果表明,用适宜剂量的激光和高压静电场处理父本野生草莓花粉可以克服草莓种间杂交不亲和性,显著提高座果率、杂种率和交配率,从而获得较多新的草莓种质资源。  相似文献   

11.
Wild strawberry (Fragaria vesca L.) is an attactive model system for studying ripening in non-climacteric fruit, because of its small diploid genome, its short reproductive cycle, and its capacity for transformation. We have isolated eight ripening-induced cDNAs from this species after differential screening of a cDNA library. The predicted polypeptides of seven of the clones exhibit similarity to database protein sequences, including acyl carrier protein, caffeoyl- CoA 3-O-methyltransferase, sesquiterpene cyclase, major latex protein, cystathionine -synthase, dehydrin and an auxin- induced gene. A ninth cDNA clone that was constitutively expressed is predicted to encode a metallothionein-like protein. None of these proteins appear to be directly related to events generally associated with ripening such as cell wall metabolism or the accumulation of sugars and pigments, rather, their putative functions are indicative of the wide range of processes upregulated during fruit ripening.  相似文献   

12.
In addition to the role of the cell wall as a physical barrier against pathogens, some of its constituents, such as pectin-derived oligogalacturonides (OGA), are essential components for elicitation of defence responses. To investigate how modifications of pectin alter defence responses, we expressed the fruit-specific Fragaria  ×  ananassa pectin methyl esterase FaPE1 in the wild strawberry Fragaria vesca . Pectin from transgenic ripe fruits differed from the wild-type with regard to the degree and pattern of methyl esterification, as well as the average size of pectin polymers. Purified oligogalacturonides from the transgenic fruits showed a reduced degree of esterification compared to oligogalacturonides from wild-type fruits. This reduced esterification is necessary to elicit defence responses in strawberry. The transgenic F. vesca lines had constitutively activated pathogen defence responses, resulting in higher resistance to the necrotropic fungus Botrytis cinerea . Further studies in F. vesca and Nicotiana benthamiana leaves showed that the elicitation capacity of the oligogalacturonides is more specific than previously envisaged.  相似文献   

13.
RESOLUTION OF STRAWBERRY VIRUS COMPLEXES   总被引:1,自引:0,他引:1  
Strawberry virus 4 produces vein chlorosis and necrosis on strawberry (var. Royal Sovereign) and slight chlorotic spotting on wild strawberry ( Fragaria vesca L.). No vector is known. Virus 5 produces leaf curling and vein necrosis on Royal Sovereign and F. vesca. It is transmitted by strawberry aphids ( Pentatrichopus fragaefolii Cock.) which have fed on an infected plant for 1 hr. or more and persists for about 1 hr. in the vector.
The names strawberry mottle, mild yellow-edge, crinkle, vein chlorosis and leaf-curl virus are proposed for strawberry viruses 1, 2, 3, 4 and 5 respectively.  相似文献   

14.
15.

Key message

We developed an efficient Agrobacterium -mediated transformation method using an Ac/Ds transposon tagging construct for F. vesca and high throughput paromomycin spray assay to identify its transformants for strawberry functional genomics.

Abstract

Genomic resources for Rosaceae species are now readily available, including the Fragaria vesca genome, EST sequences, markers, linkage maps, and physical maps. The Rosaceae Genomic Executive Committee has promoted strawberry as a translational genomics model due to its unique biological features and transformability for fruit trait improvement. Our overall research goal is to use functional genomic and metabolic approaches to pursue high throughput gene discovery in the diploid woodland strawberry. F. vesca offers several advantages of a fleshy fruit typical of most fruit crops, short life cycle (seed to seed in 12–16 weeks), small genome size (206 Mbb/C), small plant size, self-compatibility, and many seeds per plant. We have developed an efficient Agrobacterium tumefaciens-mediated strawberry transformation method using kanamycin selection, and high throughput paromomycin spray assay to efficiently identify transgenic strawberry plants. Using our kanamycin transformation method, we were able to produce up to 98 independent kanamycin resistant insertional mutant lines using a T-DNA construct carrying an Ac/Ds transposon Launchpad system from a single transformation experiment involving inoculation of 22 leaf explants of F. vesca accession 551572 within approx. 11 weeks (from inoculation to soil). Transgenic plants with 1–2 copies of a transgene were confirmed by Southern blot analysis. Using our paromomycin spray assay, transgenic F. vesca plants were rapidly identified within 10 days after spraying.  相似文献   

16.
A candidate gene approach was used to determine the likely molecular identity of the c locus (yellow fruit color) in Fragaria vesca, a diploid (2n=2x=14) strawberry. Using PCR with degenerate primer pairs, intron-containing segments of structural genes coding for chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and one Del-like regulatory gene in the anthocyanin biosynthetic pathway, were amplified, cloned and sequenced. Intron length polymorphisms for each of these genes were detected among three diploid varieties: F. vesca Alpine variety ’Yellow Wonder’ (YW) (Europe); DN1C, a F. vesca clone collected from Northern California; and Fragaria nubicola FRA520, a U.S.D.A. accession collected in Pakistan. Using F2 generations of the crosses DN1C×YW and YW×FRA520 as mapping populations, the six candidate genes were mapped in relation to previously mapped randomly amplified polymorphic DNA (RAPD) markers and morphological markers. The F3H gene was linked without recombination to the c locus in linkage group I, while the other five candidate genes mapped to different linkage groups. These results suggest that the wild-type allele (C) of the c (yellow fruit color) locus encodes an F3H necessary for red fruit color in F. vesca. Received: 28 August 2000 / Accepted: 21 December 2000  相似文献   

17.
Aphides ( Capitophorus fragariae ) were fed for periods of up to 24 hr. on strawberry plants infected with mild crinkle, severe crinkle or yellow-edge and then transferred to plants of the wild strawberry, Fragaria vesca , or of the cultivated strawberry, variety Royal Sovereign. On F. vesca the symptoms produced were chlorotic speckling, distortion and dwarfing of the leaves, varying in intensity', and on Royal Sovereign scattered, inconspicuous, diffuse, chlorotic spots.
The symptoms from all three sources of infection were similar and were indistinguishable from those of mild crinkle of Harris & King. The virus thus selectively transmitted is tentatively concluded to be the mild crinkle virus.
The virus was transmitted after feeding periods of 1 hr. or more and did not generally persist in the vector for more than 3 hr.  相似文献   

18.
19.
Unlike ovary-derived botanical fruits, strawberry (Fragaria x ananassa) is an accessory fruit derived from the receptacle, the stem tip subtending floral organs. Although both botanical and accessory fruits initiate development in response to auxin and gibberellic acid (GA) released from seeds, the downstream auxin and GA signaling mechanisms underlying accessory fruit development are presently unknown. We characterized GA and auxin signaling mutants in wild strawberry (Fragaria vesca) during early stage fruit development. While mutations in FveRGA1 and FveARF8 both led to the development of larger fruit, only mutations in FveRGA1 caused parthenocarpic fruit formation, suggesting FveRGA1 is a key regulator of fruit set. FveRGA1 mediated fertilization-induced GA signaling during accessory fruit initiation by repressing the expression of cell division and expansion genes and showed direct protein–protein interaction with FveARF8. Further, fvearf8 mutant fruits exhibited an enhanced response to auxin or GA application, and the increased response to GA was due to increased expression of FveGID1c coding for a putative GA receptor. The work reveals a crosstalk mechanism between FveARF8 in auxin signaling and FveGID1c in GA signaling. Together, our work provides functional insights into hormone signaling in an accessory fruit, broadens our understanding of fruit initiation in different fruit types, and lays the groundwork for future improvement of strawberry fruit productivity and quality.

An investigation of the mechanism of accessory fruit initiation in diploid strawberry, identifying the function of two hormone signaling genes in fruit initiation.  相似文献   

20.

Background  

We are studying the regulation of flowering in perennial plants by using diploid wild strawberry (Fragaria vesca L.) as a model. Wild strawberry is a facultative short-day plant with an obligatory short-day requirement at temperatures above 15°C. At lower temperatures, however, flowering induction occurs irrespective of photoperiod. In addition to short-day genotypes, everbearing forms of wild strawberry are known. In 'Baron Solemacher' recessive alleles of an unknown repressor, SEASONAL FLOWERING LOCUS (SFL), are responsible for continuous flowering habit. Although flower induction has a central effect on the cropping potential, the molecular control of flowering in strawberries has not been studied and the genetic flowering pathways are still poorly understood. The comparison of everbearing and short-day genotypes of wild strawberry could facilitate our understanding of fundamental molecular mechanisms regulating perennial growth cycle in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号