首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Natriuretic peptides help to maintain sodium and fluid volume homeostasis in a healthy cardio-renal environment. Since the identification of Dendroaspis natriuretic peptide (DNP) as a new member of the natriuretic peptide family, DNP has been considered as an important regulator of natriuresis and dieresis. The present study was undertaken to investigate the presence of immunoreactive Dendroaspis natriuretic peptide (DNP) and its specific receptor in rabbit. DNP was detected in heart, kidney, liver, brain, and plasma by radioimmunoassay (RIA). DNP contents of cardiac atrium and ventricle, renal cortex and medulla, liver, and brain were 1.42 ± 0.15, 1.0 6 ± 0.08, 2.55 ± 0.21, 1.81 ± 0.16, 1.36 ± 0.22, and 0.69 ± 0.15 pg/mg of wet weight, respectively. The concentration of DNP in plasma was 235.44 ± 15.44 pg/ml. By quantitative in vitro receptor autoradiography, specific 12?I-DNP binding sites were revealed in glomeruli, interlobular artery, acuate artery, vasa recta bundle, and inner medulla of the kidney with an apparent dissociation constant (K(d)) of 0.29 ± 0.05, 0.36 ± 0.03, 0.84 ± 0.19, 1.18 ± 0.23, and 10.91 ± 1.59 nM, respectively. Basal rate of 3', 5'-cyclic guanosine monophosphate (cGMP) production by particulate guanylyl cyclase (GC) activation of glomerular membranes was basally 13.40 ± 1.70 pmol/mg protein/min. DNP caused an increment of cGMP production in similar magnitude to that caused by ANP, BNP, and urodilatin, while the production of cGMP by CNP was significantly lower than that by DNP. Our results show that plasma levels of DNP were higher when compared to other tissues. DNP produces cGMP via the NPR-A receptor subtype in the kidney, similarly to ANP and BNP, suggesting that plasma DNP could have similar functions as ANP and BNP.  相似文献   

2.
This paper describes the purification, sequence, and biological properties of a 38-amino acid residue peptide from the venom of Dendroaspis angusticeps which shared important sequence homologies with natriuretic peptides. Dendroaspis natriuretic peptide (DNP) relaxed aortic strips that had been contracted by 40 mM KCl with a potency (K0.5 = 20 nM) similar to that of atrial natriuretic peptide (ANP) and larger than that of C type natriuretic peptide (CNP). The relaxing actions of ANP and DNP (both at 100 nM) were mutually exclusive. Bovine aortic endothelial cells responded to ANP (K0.5 = 3 nM) and DNP (K0.5 = 3 nM) but not to CNP by a large activation of guanylate cyclase. Rat aortic myocytes showed larger cGMP responses to CNP (K0.5 = 10 nM) than to ANP or DNP (K0.5 = 100 nM). Finally, DNP completely prevented the specific 125I-ANP binding to clearance receptors in cultured aortic myocytes with a potency (Kd = 10 nM) that was less than that of ANP (Kd = 0.3 nM). It is concluded that DNP is a new member of the family of natriuretic peptides and that it recognizes ANPA receptors and clearance, ANPc receptors, but not CNP-specific ANPB receptors.  相似文献   

3.
Piao FL  Park SH  Han JH  Cao C  Kim SZ  Kim SH 《Regulatory peptides》2004,118(3):193-198
Dendroaspis natriuretic peptide (DNP), a 38-amino acid peptide, was isolated from the venom of green mamba. It has structural and functional similarities to the other members of the natriuretic peptide family. The purpose of this study was to determine whether DNP is present in pig ovarian granulosa cells and to define its biological functions. The serial dilution curves of extracts of granulosa cells and follicular fluid were parallel to the standard curve of DNP, and a major peak of molecular profile of both extracts by HPLC was synthetic DNP. The concentration of DNP was 7.51+/-1.46 pg/10(7) cells and 24.81+/-2.38 pg/ml in granulosa cells and follicular fluid, respectively. Natriuretic peptides increased cGMP production in the purified membrane of granulosa cells with a rank order of potency of C-type natriuretic peptide (CNP)>atrial natriuretic peptide (ANP)=DNP. mRNAs for natriuretic peptide receptor-A (NPR-A), NPR-B and NPR-C were detected by RT-PCR. The binding site of (125)I-DNP was also observed in granulosa cell layer by in vitro autoradiography. Synthetic DNP inhibited the secretion of ANP from granulosa cells in a concentration-dependent manner and the potency was similar to CNP. The concentration of DNP and CNP, which inhibited the secretion of ANP by 50%, was about 1 nM. Increases in production of cGMP in granulosa cells were observed by DNP or CNP. Therefore, these results show the existence of DNP system and the cross-talk between natriuretic peptides in pig ovarian granulosa cells.  相似文献   

4.
T Sano  R Imura  Y Morishita  Y Matsuda  K Yamada 《Life sciences》1992,51(18):1445-1451
HS-142-1, a novel polysaccharide, of microbial origin had been characterized as a specific antagonist of guanylyl cyclase-linked atrial natriuretic peptide (ANP) receptors (ANP-GC receptor) in bovine adrenal cortex. The effect of HS-142-1 on ANP receptors of rat glomeruli were examined. HS-142-1 blocked rat ANP (r-ANP)-stimulated cGMP production in a concentration-dependent manner, although it caused only slight inhibition in the specific binding of [125I]-rANP to the glomeruli where only a small portion of the binding sites are coupled to guanylyl cyclase. HS-142-1 recognized the 135K ANP receptor which is thought to be ANP-GC receptors but did not recognized 60K receptor, guanylyl cyclase-free type from affinity cross-linking studies with glomerular membranes. These results indicate that HS-142-1 is a specific antagonist for the ANP-GC receptor in rat glomeruli, and that it will be a powerful tool for understanding the physiological roles of ANP in renal responses.  相似文献   

5.
Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [(125)I]-ANP from NPR-C with pM-to-nM K(i) values. DNP displaced [(125)I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K(i)>1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.  相似文献   

6.
Using an antiserum raised against the purified atrial natriuretic peptide (ANP) receptor that has a disulfide-linked homodimeric structure and represents one subtype of the multiple ANP receptors, we showed that the receptor is coupled to the guanylate cyclase activation; formerly, this type of ANP receptor is not considered to be coupled to the cyclase. The specificity of the antiserum was determined by immunoblot analysis and immunoprecipitation. The anti-receptor antiserum did not compete with 125I-ANP for binding to the receptor but it lowered the affinity of the receptor. When added to bovine endothelial cell cultures, the antiserum blocked the cyclic GMP response of the cells triggered by ANP. These results indicate that the subtype of the ANP receptor recognized by the antiserum is responsible for the activation of particulate guanylate cyclase as well as the double function type receptor that has been assumed to contain both the receptor domain and the catalytic domain for cGMP synthesis on the same molecule. The presence of dissociative complexes of ANP receptor and particulate guanylate cyclase was also demonstrated by radiation inactivation analysis.  相似文献   

7.
Natriuretic peptide receptors in cultured rat diencephalon   总被引:2,自引:0,他引:2  
To characterize the type of cell expressing natriuretic peptide receptors in the brain and the nature of these receptors, we conducted studies in primary cultured glial and neuronal cells derived from fetal rat diencephalon. The glial predominant cultures (95% of total cells and glial fibrillary acidic protein positive) expressed nearly a 10-fold greater specific binding of the natriuretic peptides to cell surface receptors compared with the neuron-predominant cultures. Scatchard analysis of binding studies with 125I-atrial natriuretic peptide (ANP) and 125I-brain natriuretic peptide (BNP) revealed a single class of receptors with dissimilar affinities (0.25 +/- 0.09 and 0.74 +/- 0.07 nM, respectively, n = 3 experiments p less than 0.01) but similar numbers of binding sites for both peptides (93 and 88 fmol/mg of protein, respectively). Cross-linking of 125I-ANP and BNP to cultured glia followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography identified distinct bands at either approximate Mr 130,000, or 102,000 and 66,000, corresponding to two high molecular weight (B) receptors and one low molecular weight (C) receptor described in other tissues. Different subtypes of astrocytes appeared to express different B receptors. Binding and cross-linking of radiolabeled ANP or BNP were competitively inhibited equally by unlabeled ANP or BNP, indicating that ANP and BNP probably bind the same receptors. The glial cultures functionally expressed a receptor(s) with guanylate cyclase activity; BNP was less potent than ANP in stimulating cGMP at lower concentrations. These results indicate that both high and low molecular weight natriuretic peptide receptors are expressed in astrocyte-predominant cultures from the fetal diencephalon and suggest that glia participate in several actions of ANP which are probably mediated through this area of the brain.  相似文献   

8.
Pulmonary clearance of atrial natriuretic peptide (ANP) was measured by indicator dilution technique in isolated perfused rat lungs with and without ANP clearance receptor (C-receptor) blockade. Approximately 50% of a bolus injection of 125I-ANP was removed during a single pass through the lungs compared with the intravascular marker 14C-dextran. Pulmonary clearance of 125I-ANP was suppressed in a dose-dependent fashion by unlabeled ANP. C-receptor blockade suppressed pulmonary clearance of 125I-ANP to the same degree as unlabeled ANP. High-performance liquid chromatography analysis of the pulmonary venous effluent from lungs treated with C-receptor ligand demonstrated intact 125I-ANP. We conclude that virtually all of the pulmonary vascular uptake of 125I-ANP during a single pass through isolated lungs is secondary to removal by ANP C-receptors.  相似文献   

9.
Single-transmembrane natriuretic peptide clearance receptor (NPR-C), which is devoid of a cytoplasmic guanylyl cyclase domain, interacts with pertussis toxin (PTx)-sensitive G proteins to activate endothelial nitric oxide synthase (eNOS) expressed in gastrointestinal smooth muscle cells. We examined the ability of NPR-C to activate other effector enzymes in eNOS-deficient tenia coli smooth muscle cells; these cells expressed NPR-C and NPR-B but not NPR-A. Atrial natriuretic peptide (ANP), the selective NPR-C ligand cANP-(4-23), and vasoactive intestinal peptide (VIP) inhibited (125)I-ANP and (125)I-VIP binding to muscle membranes in a pattern indicating high-affinity binding to NPR-C. Interaction of VIP with NPR-C was confirmed by its ability to inhibit (125)I-ANP binding to membranes of NPR-C-transfected COS-1 cells. In tenia muscle cells, all ligands selectively activated G(i-1) and G(i-2); VIP also activated G(s) via VIP(2) receptors. All ligands stimulated phosphoinositide hydrolysis, which was inhibited by ANP-(1-11), PTx, and antibodies to phospholipase C-beta3 (PLC-beta3) and Gbeta. cANP-(4-23) contracted tenia muscle cells; contraction was blocked by U-73122 and PTx and by antibodies to PLC-beta3 and Gbeta in intact and permeabilized muscle cells, respectively. VIP and ANP contracted muscle cells only after inhibition of cAMP- and cGMP-dependent protein kinases. ANP and cANP-(4-23) inhibited forskolin-stimulated cAMP in a PTx-sensitive fashion. We conclude that NPR-C is coupled to activation of PLC-beta3 via betagamma-subunits of G(i-1) and G(i-2) and to inhibition of adenylyl cyclase via alpha-subunits.  相似文献   

10.
Type C atrial natriuretic peptide (ANP) receptor levels in cultured vascular endothelial cells were found to be very sensitive to NaCl and shown to be inversely related to the magnitude of ANP-induced cGMP response of the cells. Endothelial cells from bovine carotid artery were subcultured in Eagle's minimum essential medium supplemented with 10% fetal bovine serum (MEM-FBS) and in MEM-FBS plus 25 and 50 mM NaCl. Determination, after several passages, of ANP receptor levels in these cells by 125I-ANP binding assay and affinity labeling revealed a marked reduction in the number of type C receptor in the NaCl-treated cells, whereas type A receptor density was not affected. RNase protection assay to estimate the levels of type C receptor mRNA indicated that the reduction occurred at a pre-translational level. In spite of the decrease in type C receptor number and no significant change in type A receptor (i.e. particulate guanylate cyclase) levels, cGMP response of the NaCl-treated cells to ANP was greatly exaggerated; this sensitization was also observed in membrane preparations. Simple masking of type C ANP receptor with C-ANF (des-[Gln18,Ser19,Gly20,Leu21,Gly22]ANP), a ring-deleted ANP analog, did not produce any sensitization of the cGMP response to ANP; therefore, the above phenomenon cannot simply be explained by the clearance function of the type C receptor. Although whether the type C receptor depletion is directly related to the sensitization of the type A receptor/cyclase is not known, the phenomenon reported and characterized here will serve as a useful basis for elucidating ANP receptor regulation and activation.  相似文献   

11.
Recently a stimulatory effect of atrial natriuretic peptide (ANP) on the particulate guanylate cyclase system has been reported in the glomeruli from different species. Using cultures of homogeneous human glomerular cell lines, we found that rat and human ANP stimulated markedly cGMP formation in epithelial cells with a threshold dose of 1 nM. A 20-fold increase was obtained at 5 microM. Stimulation was also present but less substantial (2-fold at 5 microM) in mesangial cells. cGMP was formed rapidly and released in the medium. ANP and sodium nitroprusside, an activator of soluble guanylate cyclase, had additive effects on cGMP formation. ANP did not inhibit cAMP formation in both cell lines. These results demonstrate that, at least in the human species, epithelial cells represent the main target of ANP in the glomerulus. Synthesis of cGMP in the glomerular epithelial cells in response to ANP also suggests that the excess of urinary cGMP produced by the kidney which is observed after ANP administration is of glomerular rather than of tubular origin.  相似文献   

12.
The natriuretic peptide receptors (NPRs) are a family of three cell surface glycoproteins, each with a single transmembrane domain. Two of these receptors, designated NPR-A and NPR-B, are membrane guanylyl cyclases that synthesize cGMP in response to hormone stimulation. The third receptor, NPR-C, has been reported to function in the metabolic clearance of ligand and in guanylyl cyclase-independent signal transduction. We engineered three chimeric proteins consisting of the natriuretic peptide receptor extracellular domains fused to the Fc portion of human IgG-gamma 1. These molecules provide material for detailed studies of the human receptor's extracellular domain structure and interaction with the three human natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and type-C natriuretic peptide (CNP). The homodimeric fusion proteins, designated A-IgG, B-IgG, and C-IgG, were secreted from Chinese hamster ovary cells and purified by protein-A affinity chromatography. We present here the primary characterization of these fusion proteins as represented by the intrinsic hormone affinities measured by saturation binding and competition assays. The dissociation constant of 125I-ANP for A-IgG was 1.6 pM and for C-IgG, 1.2 pM. The dissociation constant of 125I-Y0-CNP (CNP with addition of tyrosine at the amino terminus) for B-IgG was 23 pM. The rank order of potency in competitive binding for A-IgG was ANP greater than BNP much greater than CNP, whereas for B-IgG the ranking was CNP much greater than ANP greater than BNP. For C-IgG, we observed ANP greater than CNP greater than or equal to BNP. These data demonstrate that the receptor-IgG fusion proteins discriminate among the natriuretic peptides in the same manner as the native receptors and provide a basis for future structural studies with these molecules. The purified fusion proteins have a variety of potential applications, one of which we illustrate by a solid phase screening assay in which rabbit sera from a series of synthetic-peptide immunizations were titered for receptor reactivity and selectivity.  相似文献   

13.
Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand–receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.  相似文献   

14.
Increased intrarenal atrial natriuretic peptide (ANP) mRNA expression has been reported in several disorders. To further investigate the action of renal ANP, we need to elucidate the exact site of its alteration in diseased kidneys. ANP mRNA and ANP were detected by in situ hybridization and immunohistochemistry in the kidneys from five normal and five diabetic rats. Renal ANP mRNA in eight normal and nine diabetic rats was measured by RT-PCR with Southern blot hybridization. In normal and diabetic rats, the distribution of ANP mRNA and ANP-like peptide was mainly located in proximal, distal, and collecting tubules. However, diabetic rats had significant enhancement of ANP mRNA and ANP-immunoreactive staining in the proximal straight tubules, medullary thick ascending limbs, and medullary collecting ducts. ANP mRNA in the outer and inner medulla of nine diabetic rats increased 5.5-fold and 3.5-fold, but only 1.8-fold in the renal cortex. This preliminary study showed that ANP mRNA and ANP immunoreactivity in proximal straight tubules, medullary thick ascending limb, and medullary collecting ducts apparently increased in diabetic kidneys. These findings imply that ANP synthesis in these nephrons may involve in adaptations of renal function in diabetes.  相似文献   

15.
We elucidated the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in human and bovine adrenocortical steroidogenesis. The urinary volume, sodium excretion and cyclic GMP (cGMP) excretion and plasma cGMP were markedly increased by the synthetic alpha-human ANP (alpha-hANP) infusion in healthy volunteers. Plasma arginine vasopressin (AVP) and aldosterone levels were significantly suppressed. Both ANP and BNP inhibited aldosterone, 19-OH-androstenedione, cortisol and DHEA secretion dose-dependently and increased the accumulation of intracellular cGMP in cultured human and bovine adrenal cells. alpha-hANP significantly suppressed P450scc-mRNA in cultured bovine adrenal cells stimulated by ACTH. Autoradiography and affinity labeling of [125I]hANP, and Scatchard plot demonstrated a specific ANP receptor in bovine and human adrenal glands. Purified ANP receptor from bovine adrenal glands identified two distinct types of ANP receptors, one is biologically active, the other is silent. A specific BNP receptor was also identified on the human and bovine adrenocortical cell membranes. The binding sites were displaced by unlabelled ANP as well as BNP. BNP showed an effect possibly via a receptor which may be shared with ANP. The mean basal plasma alpha-hANP level was 25 +/- 5 pg/ml in young men. We confirmed the presence of ANP and BNP in bovine and porcine adrenal medulla. Plasma or medullary ANP or BNP may directly modulate the adrenocortical steroidogenesis. We demonstrated that the lack of inhibitory effect of alpha-hANP on cultured aldosterone-producing adenoma (APA) cells was due to the decrease of ANP-specific receptor, which caused the loss of suppression of aldosterone and an increase in intracellular cGMP.  相似文献   

16.
17.
Natriuretic peptide receptors in the central vasculature of the toad, Bufo marinus, were characterized using autoradiographical, molecular, and physiological techniques. Specific 125I-rat ANP binding sites were present in the carotid and pulmonary arteries, the lateral aorta, the pre- and post-cava, and the jugular vein, and generally occurred in each layer of the blood vessel. The 125I-rat ANP binding was partially displaced by the specific natriuretic peptide receptor C ligand, C-ANF, which indicates the presence of two types of natriuretic peptide receptors in the blood vessels. This was confirmed by a RT-PCR study, which demonstrated that guanylyl cyclase receptor (NPR-GC) and NPR-C mRNAs are expressed in arteries and veins. An in vitro guanylyl cyclase assay showed that frog ANP stimulated the production of cGMP in arterial membrane fractions. Physiological recordings from isolated segments of the carotid and pulmonary arteries and the lateral aorta, which had been pre-constricted with arginine vasotocin, showed that rat ANP, frog ANP and porcine CNP relaxed the vascular smooth muscle with relatively similar potency. Together, the data show that the central vasculature contains two types of natriuretic peptide receptors (NPR-C and NPR-GC) and that the vasculature is a target for ANP and CNP.  相似文献   

18.
Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 ± 60 nM and Vmax of 35 ± 14 pmol of ANP degraded/10 min/105 cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0–8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.  相似文献   

19.
Effect of synthetic rat atrial natriuretic peptide (1-28) (ANP) on the cGMP content was studied using defined nephron segments of rat kidney. ANP elevates cGMP contents in glomeruli in a concentration and time-dependent manner. The increase of cGMP was observed in glomeruli, distal convoluted tubule (DCT) and cortical collecting tubule (CCT) (delta %; 279 +/- 35, 148 +/- 10 and 152 +/- 18, respectively), and no effect was observed in proximal convoluted (PCT) and straight tubule (PST). These results suggest that ANP may act directly on the tubular cells as well as glomeruli. In glomeruli, effects of ANP and carbamylcholine on cGMP contents were additive suggesting that these two agents may act on different receptors. Angiotensin II and norepinephrine failed to affect the ANP-induced cGMP production in the glomeruli.  相似文献   

20.
Human fat cell lipolysis was considered until recently to be an exclusive cAMP/protein-kinase A (PKA)-regulated metabolic pathway under the control of catecholamines and insulin. Moreover, exercise-induced lipid mobilization in humans was considered to mainly depend on catecholamine action and interplay between fat cell beta- and alpha2-adrenergic receptors controlling adenylyl cyclase activity and cAMP production. We have recently demonstrated that natriuretic peptides stimulate lipolysis and contribute to the regulation of lipid mobilization in humans. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) stimulate lipolysis in human isolated fat cells. Activation of the adipocyte plasma membrane type A guanylyl cyclase receptor (NPR-A), increase in intracellular guanosine 3',5'-cyclic monophosphate (cyclic GMP) levels and activation of hormone-sensitive lipase mediate the action of ANP. ANP does not modulate cAMP production and PKA activity. Increment of cGMP induces the phosphorylation of hormone-sensitive lipase and perilipin A via the activation of a cGMP dependent protein kinase-I (cGK-I). Plasma concentrations of glycerol and non-esterified fatty acids are increased by i.v. infusion of ANP in humans. Physiological relevance of the ANP-dependent pathway was demonstrated in young subjects performing physical exercise. ANP plays a role in conjunction with catecholamines in the control of exercise-induced lipid mobilization. This pathway becomes of major importance when subjects are submitted to chronic treatment with a beta-blocker. Oral beta-adrenoceptor blockade suppresses the beta-adrenergic component of catecholamine action in fat cells and potentiates exercise-induced ANP release by the heart. These findings may have several implications whenever natriuretic peptide secretion is altered such as in subjects with left ventricular dysfunction, congestive heart failure and obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号