首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This Paper describes the continued optimization of an MLPCN probe molecule M(1) antagonist (ML012) through an iterative parallel synthesis approach. After several rounds of modifications of the parent compound, we arrived at a new azetidine scaffold that displayed improved potency while maintaining a desirable level of selectivity over other muscarinic receptor subtypes. Data for representative molecules 7w (VU0452865) and 12a (VU0455691) are presented.  相似文献   

2.
This Letter describes the further optimization of an MLPCN probe molecule (ML137) through the introduction of 5- and 6-membered spirocycles in place of the isatin ketone. Interestingly divergent structure–activity relationships, when compared to earlier M1 PAMs, are presented. These novel spirocycles possess improved efficacy relative to ML137, while also maintaining high selectivity for the human and rat muscarinic M1 receptor subtype.  相似文献   

3.
This letter describes the continued optimization of M5 NAM ML375 (VU0483253). While a valuable in vivo tool compound, ML375 has an excessively long elimination half-life in rat (t1/2 = 80 h), which can be problematic in certain rodent addiction paradigms (e.g., reinstatement). Thus, we required an M5 NAM of comparable potency to ML375, but with a rat t1/2 of less than 4 h. Steep SAR plagued this chemotype, and here we detail aniline replacements that offered some improvements over ML375, but failed to advance. Ultimately, incorporation of a single methyl group to the 9b-phenyl ring acted as a metabolic shunt, providing (S)-11 (VU6008667), an equipotent M5 NAM, with high CNS penetration, excellent selectivity versus M1–4 and the desired short half-life (t1/2 = 2.3 h) in rat.  相似文献   

4.
Inducible nitric oxide synthase (iNOS) has been implicated in various central and peripheral pathophysiological diseases. Our high throughput screening initially identified a weak inhibitor of iNOS, thiocoumarin 13. From this lead, a number of potent derivatives were prepared that demonstrate favorable potency, selectivity and kinetics. Compound 30 has an IC50 of 60 nM for mouse iNOS and 185-fold and 9-fold selectivity for bovine eNOS and rat nNOS, respectively. In cellular assays for iNOS, this compound has micromolar potency. Furthermore, two compounds (16 and 30) demonstrate a reasonable pharmacokinetic profile in rodents. The synthesis, SAR, and biological activity of this novel class of compounds is described.  相似文献   

5.
To identify potent EP2/EP4 dual agonists with excellent subtype selectivity, a series of γ-lactam prostaglandin E analogs bearing a 16-phenyl ω-chain were synthesized and evaluated. Structural hybridization of 1 and 2, followed by more detailed chemical modification of the benzoic acid moiety, led us to the discovery of a 2-mercaptothiazole-4-carboxylic acid analog 3 as the optimal compound in the series. An isomer of this compound, the 2-mercaptothiazole-5-carboxylic acid analog 13, showed 34-fold and 13-fold less potent EP2 and EP4 receptor affinities, respectively. Structure activity relationship data from an in vitro mouse receptor binding assay are presented. Continued evaluation in an in vivo rat model of another 2-mercaptothiazole-4-carboxylic acid analog 17, optimized for sustained compound release from PLGA microspheres, demonstrated its effectiveness in a rat bone fracture-healing model following topical administration.  相似文献   

6.
The identification of a new series of selective nonsteroidal progesterone receptor (PR) agonists is reported. Using a high-throughput screening assay based on the measurement of transactivation of a mouse mammary tumor virus promoter-driven luciferase reporter (MMTV-Luc) in human breast cancer T47D cells, a benzimidazole-2-thione analog was identified. Compound 1 showed an apparent EC50 of 53 nM and efficacy of 93% with respect to progesterone. It binds to PR with high affinity (Ki nM), but had no or very low affinity for other steroid hormone receptors. Structure-activity relationship studies of a series of benzimidazole-2-thione analogs revealed critical positions for high PR binding affinity and transactivation potency as well as receptor selectivity, as exemplified by 25. Compound 25 binds to human PR with high affinity (Ki nM) and had at least > 1000-fold selectivity for PR versus other steroid receptors. Molecular modeling studies suggested that these agonists overlap favorably with progesterone in the ligand-binding domain of PR. In T47D cells, compound 25 acted as a full agonist in the MMTV-Luc reporter assay, as well as in the induction of endogenous alkaline phosphatase activity with apparent EC50 values of 4 and 9 nM, respectively. In the immature rat model, compound 25 provided a significant suppression of estrogen-induced endometrium hypertrophy as measured by luminal epithelial height. In contrast, compound 25 was inactive in the luteinizing hormone release assay in young ovariectomized rats. These benzimidazole-2-thione analogs constitute a new series of nonsteroidal PR agonists with an excellent steroid receptor selectivity profile. The differential activities observed in the in vivo progestogenic assays in rat models suggest that these analogs can act as selective PR modulators.  相似文献   

7.
(2-benzyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole-8-yl)-acetic acid (compound 1), a novel aldose reductase inhibitor, was assayed for efficacy and selectivity to inhibit rat lens aldose reductase under in vitro conditions by using enzyme preparations obtained from diabetic animals. The inhibitory efficiency was characterized by IC(50) in micromolar region. Enzyme kinetics analysis revealed uncompetitive type of inhibition, both in relation to the D,L-glyceraldehyde substrate and to the NADPH cofactor. In testing for selectivity, comparisons to rat kidney aldehyde reductase, an enzyme with the highest homology to aldose reductase, was used. The inhibition selectivity of the compound tested was characterized by selectivity factor around 20 and was even slightly improved under conditions of prolonged experimental diabetes. These findings were identical with those in the control rats. To conclude, the inhibitory mode, efficacy and selectivity of compound 1, a novel aldose reductase inhibitor, was preserved even under the conditions of prolonged STZ-induced experimental diabetes of rats.  相似文献   

8.
A high-throughput screen (HTS) with the National Institute of Health-Molecular Libraries Small Molecule Repository (NIH-MLSMR) compound collection identified a class of acyl hydrazones to be selectively lethal to breast cancer stem cell (CSC) enriched populations. Medicinal chemistry efforts were undertaken to optimize potency and selectivity of this class of compounds. The optimized compound was declared as a probe (ML239) with the NIH Molecular Libraries Program and displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control line (HMLE_sh_GFP).  相似文献   

9.
A benzothiazole-derived compound (4a) designed to mimic the C(alpha)-C(beta) bond vectors and terminal functionalities of Lys2, Tyr13 and Arg17 in omega-conotoxin GVIA was synthesised, together with analogues (4b-d), which had each side-chain mimic systematically truncated or eliminated. The affinity of these compounds for rat brain N-type and P/Q-type voltage gated calcium channels (VGCCs) was determined. In terms of N-type channel affinity and selectivity, two of these compounds (4a and 4d) were found to be highly promising, first generation mimetics of omega-conotoxin. The fully functionalised mimetic (4a) showed low microM binding affinity to N-type VGCCs (IC(50)=1.9 microM) and greater than 20-fold selectivity for this channel sub-type over P/Q-type VGCCs, whereas the mimetic in which the guanidine-type side chain was truncated back to an amine (4d, IC(50)= 4.1 microM) showed a greater than 25-fold selectivity for the N-type channel.  相似文献   

10.
Using SAR from two related series of pyrimidinetrione-based inhibitors, compounds with potent MMP-13 inhibition and >100-fold selectivity against other MMPs have been identified. Despite high molecular weights, clogPs, and polar surface areas, the compounds are generally well absorbed and have excellent pharmacokinetic (PK) properties when dosed as sodium salts. In a rat fibrosis model, a compound from the series displayed no fibrosis at exposures many fold greater than its MMP-13 IC50.  相似文献   

11.
We report the discovery and structure-activity relationship of 2,6-disubstituted pyrazines, which are potent and selective CK2 inhibitors. Lead compound 1 was identified, and derivatives were prepared to develop potent inhibitory activity. As a result, we obtained compound 7, which was the smallest unit that retained potency. Then, introducing an aminoalkyl group at the 6-position of the indazole ring resulted in improved efficacy in both enzymatic and cell-based CK2 inhibition assays. Moreover, compound 13 showed selectivity against other kinases and in vivo efficacy in a rat nephritis model. These results show that 2,6-disubstituted pyrazines have potential as therapeutic agents for nephritis.  相似文献   

12.
A potent, selective series of MMP-13 inhibitors has been derived from a weak (3.2 microM) inhibitor that did not bear a zinc chelator. Structure-based drug design strategies were employed to append a Zn-chelating group to one end of the molecule and functionality to enhance selectivity to the other. A compound from this series demonstrated rat oral bioavailability and efficacy in a bovine articular cartilage explant model.  相似文献   

13.
We recently reported the systematic ligand-based rational design and synthesis of monovalent Smac mimetics that bind preferentially to the BIR2 domain of the anti-apoptotic protein XIAP. Expanded structure–activity relationship (SAR) studies around these peptidomimetics led to compounds with significantly improved selectivity (>60-fold) for the BIR2 domain versus the BIR3 domain of XIAP. The potent and highly selective IAP antagonist 8q (ML183) sensitized TRAIL-resistant prostate cancer cells to apoptotic cell death, highlighting the merit of this probe compound as a valuable tool to investigate the biology of XIAP.  相似文献   

14.
A concise new route allowing easy access to five previously unreported 2,4-diamino-6-(substituted benzyl)pyrido[2,3-d]pyrimidines (2a-e) was developed, involving condensation of 2,4-dipivaloylamino-5-bromopyrido[2,3-d]pyrimidine (6) with an organozinc halide in the presence of a catalytic amount of [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II).CH(2)Cl(2), followed by removal of the pivaloyl groups with base. Also prepared via a scheme based on the Taylor ring expansion/ring annulation synthesis were three heretofore undescribed 2,4-diamino-5-(substituted benzyl)-7H-pyrrolo[2,3-d]pyrimidines (3b-c). Standard spectrophotometric assays were used to compare the ability of 2a-e and 3b-c to inhibit dihydrofolate reductase (DHFR) from Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium, three examples of opportunistic pathogens to which AIDS patients are highly vulnerable because of their immunocompromised state. For comparison, 13 previously untested 2,4-diamino-6-(substituted benzyl)quinazolines (17a-m) were also evaluated as inhibitors of these enzymes, as well as the enzyme from rat liver. None of the quinazolines or pyridopyrimidines tested was more potent against the P. carinii enzyme than the structurally related reference compound piritrexim (1), and none showed selectivity for the P. carinii enzyme over the rat enzyme. One of the pyridopyrimidines (2c) showed 10-fold selectivity for T. gondii versus rat DHFR, and two of them (2b, 2c) showed selectivity for the M. avium enzyme. However, this gain in species selectivity was achieved at the cost of decreased in potency, as has been noted with many other lipophilic DHFR inhibitors.  相似文献   

15.
Jang S  Ryu JH  Kim DH  Oh S 《Neurochemical research》2004,29(12):2257-2266
Ameliorating effects of ginseng were observed on neuronal cell death associated with ischemia or glutamate toxicity. Ginseng saponins are transformed by intestinal microflora and the transformants would be absorbed from intestine. In the present study, we have investigated the effects of transformed ginsenoside Rg3, Rh2 and compound K on the modulation of NMDA receptor and GABAA receptor binding in rat brain. The NMDA receptor binding was analyzed by quantitative autoradiography using [3H]MK-801 binding, and GABAA receptor bindings were analyzed by using [3H]muscimol and [3H]flunitrazepam binding in rat brain slices. Ginsenoside Rg3, Rh2 and compound K were infused (10 g/10 l/h) into rat brain lateral ventricle for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML). The levels of [3H]MK-801 binding were highly decreased in almost all regions of frontal cortex and hippocampus by ginsenoside Rh2 and compound K. The levels of [3H]muscimol binding were elevated in part of frontal cortex and granule layer of cerebellum by the treatment of ginsenoside Rh2 and compound K. However, the [3H]flunitrazepam binding was not modulated by any tested ginsenosides. Ginsenoside Rh2 and compound K induced the downregulation of the [3H]MK-801 binding as well as upregulation of the and [3H]muscimol binding in a region-specific manner after prolonged infusion into lateral ventricle. However, ginsenoside Rg3 did not show the significant changes of ligand bindings. In addition, ginsenoside Rh2 decreased the expression of nNOS in the hippocampus although Rg3 decreased the expression in the cortex. These results suggest that biotransformed ginsenoside Rh2 and compound K could play an important role in the biological activities in the central nervous systems and neurodegenerative disease.  相似文献   

16.

Background

Insufficient angiogenesis and arteriogenesis in cardiac tissue after myocardial infarction (MI) is a significant factor hampering the functional recovery of the heart. To overcome this problem we screened for compounds capable of stimulating angiogenesis, and herein investigate the most active molecule, 5-Methoxyleoligin (5ML), in detail.

Methods and Results

5ML potently stimulated endothelial tube formation, angiogenic sprouting, and angiogenesis in a chicken chorioallantoic membrane assay. Further, microarray- and knock down- based analyses revealed that 5ML induces angiogenesis by upregulation of CYP26B1. In an in vivo rat MI model 5ML potently increased the number of arterioles in the peri-infarction and infarction area, reduced myocardial muscle loss, and led to a significant increase in LV function (plus 21% 28 days after MI).

Conclusion

The present study shows that 5ML induces CYP26B1-dependent angiogenesis in vitro, and arteriogenesis in vivo. Whether or not CYP26B1 is relevant for in vivo arteriogenesis is not clear at the moment. Importantly, 5ML-induced arteriogenesis in vivo makes the compound even more interesting for a post MI therapy. 5ML may constitute the first low molecular weight compound leading to an improvement of myocardial function after MI.  相似文献   

17.
Vascular aging is characterized by decreased nitric oxide (NO) bioavailability, oxidative stress, and enhanced apoptotic cell death. We hypothesized that interspecies comparative assessment of vascular function among rodents with disparate longevity may offer insight into the mechanisms determining successful vascular aging. We focused on four rodents that show approximately an order of magnitude range in maximum longevity (ML). The naked mole rat (NMR; Heterocephalus glaber) is the longest-living rodent known (ML > 28 yr), Damara mole rats (DMRs, Cryptomys damarensis; ML approximately 16 yr) and guinea pigs (GPs, Cavia porcellus; ML approximately 6 yr) have intermediate longevity, whereas laboratory mice are short living (ML approximately 3.5 yr). We compared interspecies differences in endothelial function, O(2)(-)* and H(2)O(2) production, and resistance to apoptotic stimuli in blood vessels. Sensitivity to acetylcholine-induced, NO-mediated relaxation was smaller in carotid arteries from NMRs, GPs, and DMRs than in mouse vessels. Measurements of production of O(2)(-)* (lucigenin chemiluminescence and ethidium bromide fluorescence) and H(2)O(2) (dichlorofluorescein fluorescence) showed that free radical production in vascular endothelial and smooth muscle cells is comparable in vessels of the three longer-living species and in arteries of shorter-living mice. In mouse arteries, H(2)O(2) (from 10(-6) to 10(-3) mol/l) and heat exposure (42 degrees C for 15-45 min) enhanced apoptotic cell death, as indicated by an increased DNA fragmentation rate and increased caspase 3/7 activity. In NMR vessels, only the highest doses of H(2)O(2) enhanced apoptotic cell death, whereas heat exposure did not increase DNA fragmentation rate. Interspecies comparison showed there is a negative correlation between H(2)O(2)-induced apoptotic cell death and ML. Thus endothelial vasodilator function and vascular production of reactive oxygen species do not correlate with maximal lifespan, whereas increased lifespan potential is associated with an increased vascular resistance to proapoptotic stimuli.  相似文献   

18.
This Letter describes the continued optimization of an MLPCN probe molecule (ML137) with a focused effort on the replacement/modification of the isatin moiety present in this highly selective M1 PAM. A diverse range of structures were validated as viable replacements for the isatin, many of which engendered sizeable improvements in their ability to enhance the potency and efficacy of acetylcholine when compared to ML137. Muscarinic receptor subtype selectivity for the M1 receptor was also maintained.  相似文献   

19.
The synthesis and SAR of 5-heterocycle-substituted aminothiazole adenosine receptor antagonists is described. Several compounds show high affinity and selectivity for the A2B and A3 receptors. One compound (5f) shows good ADME properties in the rat and as such may be an important new compound in testing the current hypotheses proposing a therapeutic role for a dual A2B/A3 antagonist in allergic diseases.  相似文献   

20.
This Letter describes the further chemical optimization of the M5 PAM MLPCN probes ML129 and ML172. A multi-dimensional iterative parallel synthesis effort quickly explored isatin replacements and a number of southern heterobiaryl variations with no improvement over ML129 and ML172. An HTS campaign identified several weak M5 PAMs (M5 EC50 >10 μM) with a structurally related isatin core that possessed a southern phenethyl ether linkage. While SAR within the HTS series was very shallow and unable to be optimized, grafting the phenethyl ether linkage onto the ML129/ML172 cores led to the first sub-micromolar M5 PAM, ML326 (VU0467903), (human and rat M5 EC50s of 409 nM and 500 nM, respectively) with excellent mAChR selectivity (M1–M4 EC50s >30 μM) and a robust 20-fold leftward shift of the ACh CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号