首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Although the structural design of cellular bone (i.e., bone containing osteocytes that are regularly spaced throughout the bone matrix) dates back to the first occurrence of bone as a tissue in evolution, and although osteocytes represent the most abundant cell type of bone, we know as yet little about the role of the osteocyte in bone metabolism. Osteocytes descend from osteoblasts. They are formed by the incorporation of osteoblasts into the bone matrix. Osteocytes remain in contact with each other and with cells on the bone surface via gap junction–coupled cell processes passing through the matrix via small channels, the canaliculi, that connect the cell body–containing lacunae with each other and with the outside world. During differentiation from osteoblast to mature osteocyte the cells lose a large part of their cell organelles. Their cell processes are packed with microfilaments. In this review we discuss the various theories on osteocyte function that have taken in consideration these special features of osteocytes. These are (1) osteocytes are actively involved in bone turnover; (2) the osteocyte network is through its large cell-matrix contact surface involved in ion exchange; and (3) osteocytes are the mechanosensory cells of bone and play a pivotal role in functional adaptation of bone. In our opinion, especially the last theory offers an exciting concept for which some biomechanical, biochemical, and cell biological evidence is already available and which fully warrants further investigations. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Within mineralized bone, osteocytes form dendritic processes that travel through canaliculi to make contact with other osteocytes and cells on the bone surface. This three-dimensional syncytium is thought to be necessary to maintain viability, cell-to-cell communication, and mechanosensation. E11/gp38 is the earliest osteocyte-selective protein to be expressed as the osteoblast differentiates into an osteoid cell or osteocyte, first appearing on the forming dendritic processes of these cells. Bone extracts contain large amounts of E11, but immunostaining only shows its presence in early osteocytes compared to more deeply embedded cells, suggesting epitope masking by mineral. Freshly isolated primary osteoblasts are negative for E11 expression but begin to express this protein in culture, and expression increases with time, suggesting differentiation into the osteocyte phenotype. Osteoblast-like cell lines 2T3 and Oct-1 also show increased expression of E11 with differentiation and mineralization. E11 is highly expressed in MLO-Y4 osteocyte-like cells compared to osteoblast cell lines and primary osteoblasts. Differentiated, mineralized 2T3 cells and MLO-Y4 cells subjected to fluid flow shear stress show an increase in mRNA for E11. MLO-Y4 cells show an increase in dendricity and elongation of dendrites in response to shear stress that is blocked by small interfering RNA specific to E11. In vivo, E11 expression is also increased by a mechanical load, not only in osteocytes near the bone surface but also in osteocytes more deeply embedded in bone. Maximal expression is observed not in regions of maximal strain but in a region of potential bone remodeling, suggesting that dendrite elongation may be occurring during this process. These data suggest that osteocytes may be able to extend their cellular processes after embedment in mineralized matrix and have implications for osteocytic modification of their microenvironment.  相似文献   

3.
An osteocyte lacunae differential count under the light microscope (LM) (1-lacunae with live osteocytes, 2-empty lacunae and lacunae with degenerating osteocytes) was carried out outside the reversal lines of osteonic lamellar bone from various mammals and man to evaluate the possibility of osteocyte survival where osteoclast resorption had occurred. The polarized light microscope (PLM) was used to establish the curvature of bony lamellae outside the convexity of reversal lines: concave lamellae indicate osteocytes reabsorbed on their vascular side where they radiate long vascular dendrites; convex lamellae indicate bone resorption on the osteocyte mineral side, radiating short dendrites. In all samples it was found that: a) about 60% of osteocytes outside the reversal lines were live; b) the percentage of alive osteocytes close to reversal lines is higher when they are attacked on their mineral side. The present data support our view that surviving osteocytes, particularly those attacked from their mineral side, might intervene in the final phase of bone resorption (osteoclast inhibition?). The fact that under the transmission electron microscope (TEM) intercellular contacts were never observed between osteocytes and osteoclasts indicates that if a modulation should occur between these two cellular types it could take place by a paracrine route only. The putative role of the cells of the osteogenic system, particularly osteocytes, in the bone remodeling cycle is also discussed.  相似文献   

4.
R Pawlicki 《Acta anatomica》1978,100(4):411-418
The investigation was carried out on the fossil dinosaur bone from before 80 million years. Samples for examination were prepared with specially elaborated methods. Thus the isolated osteocytes of the dinosaur bone, which had previously undergone natural fossilizing processes, were obtained. This permitted their morphological assessment. On the basis of the images obtained in the light, transmission electron, and scanning electron microscopes, two types of osteocytes were distinguished. Type I was characterized by an elongated shape, its length exceeding the width several times; the mean dimensions of this osteocyte amounted to 28.8/7.03 micron. Type II was shorter, its mean dimensions being equal to 20.28/6.88 micron. Moreover, two types of osteocytes processes were differentiated: the first was represented by thick processes, so-called 'axial processes', whose diameter ranged from 0.5 to 1.5 micron, and which, as a rule, departed from the pole of the cell. They ran farther from the mother cell body to more distant osteocytes. The other type consisted of thin processes departing from various points of the cell body in no particular arrangement but always extrapolarly. They branched off in a close vicinity of the mother osteocyte. Their diameter ranged between 0.076 and 0.35 micron.  相似文献   

5.
6.
Subchondral bone sclerosis is a well-recognised manifestation of osteoarthritis (OA). The osteocyte cell network is now considered to be central to the regulation of bone homeostasis; however, it is not known whether the integrity of the osteocyte cell network is altered in OA patients. The aim of this study was to investigate OA osteocyte phenotypic changes and its potential role in OA subchondral bone pathogenesis. The morphological and phenotypic changes of osteocytes in OA samples were investigated by micro-CT, SEM, histology, immunohistochemistry, TRAP staining, apoptosis assay and real-time PCR studies. We demonstrated that in OA subchondral bone, the osteocyte morphology was altered showing rough and rounded cell body with fewer and disorganized dendrites compared with the osteocytes in control samples. OA osteocyte also showed dysregulated expression of osteocyte markers, apoptosis, and degradative enzymes, indicating that the phenotypical changes in OA osteocytes were accompanied with OA subchondral bone remodelling (increased osteoblast and osteoclast activity) and increased bone volume with altered mineral content. Significant alteration of osteocytes identified in OA samples indicates a potential regulatory role of osteocytes in subchondral bone remodelling and mineral metabolism during OA pathogenesis.  相似文献   

7.
Summary This report presents evidence for the presence of the vitamin D-dependent calcium-binding protein, calbindin-D9K, in bone cells and matrix. In undecalcified frozen sections of growing and adult rat bone, calbindin-D9K was immunohistochemically localized in trabecular bone of the epiphysis and metaphysis and in cortical bone of the diaphysis. It was found within the cytoplasm of osteocytes, of osteoblasts lining the osteoid, and osteoblasts inside the osteoid seams. It was also found in the osteoblast processes and the anastomosed reticulum of the processes connecting the osteocytes with each other. Extracellularly, calbindin-D9K immunoreactivity was present in compact cortical bone in the areas of the mineralized matrix surrounding the osteocyte lacunae and in the pericanalicular walls containing the cell processes. Calbindin-D9K immunoreactivity was low or absent from the cytoplasm of osteocytes in trabecular bone from severely vitamin D-deficient rats and restored in vitamin D-deficient rats given a single dose of 1,25(OH)2-VitD3. Thus, the synthesis of immunoreactive calbindin-D9K by osteoblasts and osteocytes in trabecular bone is vitamin D-dependent. The presence of immunoreactive calbindin-D9K in the osteocytes and their cell processes suggests that this calcium-binding protein is involved in the calcium fluxes regulating bone calcium homeostasis. Its locatization in osteoblasts involved in bone formation and in their cell processes suggests that it has a role in the calcium transport from these cells towards the sites of active bone mineralization. The extracellular immunoreactive calbindin-D9K in the walls of osteocyte lacunae and pericanalicula margins may have a specific role in those areas. Thus, the distribution of calbindin-D9K immunoreactivity in bone indicates that it may mediate all or part of the action of vitamin D on bone cells and bone mineralization.  相似文献   

8.
Current theories suggest that bone modeling and remodeling are controlled at the cellular level through signals mediated by osteocytes. However, the specific signals to which bone cells respond are still unknown. Two primary theories are: (1) osteocytes are stimulated via the mechanical deformation of the perilacunar bone matrix and (2) osteocytes are stimulated via fluid flow generated shear stresses acting on osteocyte cell processes within canaliculi. Recently, much focus has been placed on fluid flow theories since in vitro experiments have shown that bone cells are more responsive to analytically estimated levels of fluid shear stress than to direct mechanical stretching using macroscopic strain levels measured on bone in vivo. However, due to the complex microstructural organization of bone, local perilacunar bone tissue strains potentially acting on osteocytes cannot be reliably estimated from macroscopic bone strain measurements. Thus, the objective of this study was to quantify local perilacunar bone matrix strains due to macroscopically applied bone strains similar in magnitude to those that occur in vivo. Using a digital image correlation strain measurement technique, experimentally measured bone matrix strains around osteocyte lacunae resulting from macroscopic strains of approximately 2000 microstrain are significantly greater than macroscopic strain on average and can reach peak levels of over 30,000 microstrain locally. Average strain concentration factors ranged from 1.1 to 3.8, which is consistent with analytical and numerical estimates. This information should lead to a better understanding of how bone cells are affected by whole bone functional loading.  相似文献   

9.
Biomechanical theories to predict bone remodelling have used either mechanical strain or microdamage as the stimulus driving cellular responses. Even though experimental data have implicated both stimuli in bone cell regulation, a mechano-regulatory system incorporating both stimuli has not yet been proposed. In this paper, we test the hypothesis that bone remodelling may be regulated by signals due to both strain and microdamage. Four mechano-regulation algorithms are studied where the stimulus is: strain, damage, combined strain/damage, and either strain or damage with damage-adaptive remodelling prioritised when damage is above a critical level. Each algorithm is implemented with both bone lining cell (surface) sensors and osteocyte cell (internal) sensors. Each algorithm is applied to prediction of a bone multicellular unit (BMU) remodelling on the surface of a bone trabecula. It is predicted that a regulatory system capable of responding to changes in either strain or microdamage but which prioritises removal of damaged bone when damage is above a critical level, is the only one that provides a plausible prediction of BMU behaviour. A mechanism for this may be that, below a certain damage threshold, osteocyte processes can sense changes in strain and fluid flow but above the threshold damage interferes with the signalling mechanism, or causes osteocyte apoptosis so that a remodelling response occurs to remove the dead osteocytes.  相似文献   

10.
The fossil dinosaur bone material, 80 million years old was studied. Samples for analysis were prepared with specially elaborated methods. Images obtained in the light, transmission electron, and scanning electron microscopes revealed the spatial distribution of the osteocytes lying near and far from the vascular canal. Osteocytes of particular kind were found to be present in the immediate vicinity of the canal. The characteristic morphological structure and the localization of this osteocytes between the vascular canal and the osteocytes lying farther from the canal, as well as the mediation of this cell in the system of connections between those elements, served as a basis for the separation of this cells as the intermediary osteocyte. Among the osteocytes situated farther from the vascular canal, three kinds were distinguished: mono-, bi-, and multipolar, according to the kinds of processes and their distribution in relation to the mother cell body. By analogy with modern bone, in dinosaur bone specific functions may be ascribed to the distinguished types of osteocytes and to their differentiated processes in the conduction of nutrient and building elements and metabolites from the vascular canal to the intermediary osteocytes and, with their participation, to other osteocytes lying farther from the canal. This should naturally be analysed as the two-way tract.  相似文献   

11.
Osteocytes establish an extensive intracellular and extracellular communication system via gap-junction-coupled cell processes and canaliculi throughout bone and the communication system is extended to osteoblasts on the bone surface. The osteocyte network is an ideal mechanosensory system and suitable for mechanotransduction. However, the overall function of the osteocyte network remains to be clarified, since bone resorption is enhanced by osteocyte apoptosis, which is followed by a process of secondary necrosis attributable to the lack of scavengers. The enhanced bone resorption is caused by the release of intracellular content, including immunostimulatory molecules that activate osteoclastogenesis through the canaliculi. Therefore, a mouse model is required in which the osteocyte network is disrupted but in which no bone resorption is induced, in order to evaluate the overall functions of the osteocyte network. One such model is the BCL2 transgenic mouse, in which the osteocyte network, including both intracellular and extracellular networks, is disrupted. Another model is the osteocyte-specific Gja1 knockout mouse, in which intercellular communication through gap junctions is impaired but the canalicular system is intact. Combining the findings from these mouse models with previous histological observations showing the inverse linkage between osteocyte density and bone formation, we conclude that the osteocyte network enhances bone resorption and inhibits bone formation under physiological conditions. Further, studies with BCL2 transgenic mice show that these osteocyte functions are augmented in the unloaded condition. In this condition, Rankl upregulation in osteoblasts and Sost upregulation in osteocytes are, at least in part, responsible for enhanced bone resorption and suppressed bone formation, respectively.  相似文献   

12.
It is proposed that osteocytes embedded in the bone matrix have the ability to sense deformation and/or damage to the matrix and to feed these mechanical signals back to the adaptive bone remodeling process. When osteoblasts differentiate into osteocytes during the bone formation process, they change their morphology to a stellate form with many slender processes. This characteristic cell shape may underlie the differences in mechanosensitivity between the cell processes and cell body. To elucidate the mechanism of cellular response to mechanical stimulus in osteocytes, we investigated the site-dependent response to quantitatively controlled local mechanical stimulus in single osteocytes isolated from chick embryos, using the technique of calcium imaging. A mechanical stimulus was applied to a single osteocyte using a glass microneedle targeting a microparticle adhered to the cell membrane by modification with a monoclonal antibody OB7.3. Application of the local deformation induced calcium transients in the vicinity of the stimulated point and caused diffusive wave propagation of the calcium transient to the entire intracellular region. The rate of cell response to the stimulus was higher when applied to the cell processes than when applied to the cell body. In addition, a large deformation was necessary at the cell body to induce calcium transients, whereas a relatively small deformation was sufficient at the cell processes, suggesting that the mechanosensitivity of the cell processes was higher than that of the cell body. These results suggest that the cell shape with slender processes contributes to the site-dependent mechanosensitivity in osteocytes.  相似文献   

13.
This report presents evidence for the presence of the vitamin D-dependent calcium-binding protein, calbindin-D9K, in bone cells and matrix. In undecalcified frozen sections of growing and adult rat bone, calbindin-D9K was immunohistochemically localized in trabecular bone of the epiphysis and metaphysis and in cortical bone of the diaphysis. It was found within the cytoplasm of osteocytes, of osteoblasts lining the osteoid, and osteoblasts inside the osteoid seams. It was also found in the osteoblast processes and the anastomosed reticulum of the processes connecting the osteocytes with each other. Extracellularly, calbindin-D9K immunoreactivity was present in compact cortical bone in the areas of the mineralized matrix surrounding the osteocyte lacunae, and in the pericanalicular walls containing the cell processes. Calbindin-D9K immunoreactivity was low or absent from the cytoplasm of osteocytes in trabecular bone from severely vitamin D-deficient rats and restored in vitamin D-deficient rats given a single dose of 1,25(OH)2-VitD3. Thus, the synthesis of immunoreactive calbindin-D9K by osteoblasts and osteocytes in trabecular bone is vitamin D-dependent. The presence of immunoreactive calbindin-D9K in the osteocytes and their cell processes suggests that this calcium-binding protein is involved in the calcium fluxes regulating bone calcium homeostasis. Its localization in osteoblasts involved in bone formation and in their cell processes suggests that it has a role in the calcium transport from these cells towards the sites of active bone mineralization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid–structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity ( $3,000\,\upmu \upvarepsilon $ compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities $(\sim 60.5\,\upmu \text{ m/s })$ and average maximum shear stresses $(\sim 11\, \text{ Pa })$ surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology.  相似文献   

15.
Bone remodelling is a dynamic process that requires the coordinated interaction of osteocytes, osteoblasts, and osteoclasts, collaborating in basic multicellular units (BMUs). Communication between these cells can be by extracellular soluble molecules as well as directly propagating intercellular signalling molecules. Key to the understanding of bone remodelling is osteocyte mechanosensing and chemical signalling to the surrounding cells, since osteocytes are believed to be the mechanosensors of bone, responding to mechanical stresses. Nitric oxide (NO) is an important parameter to study osteocyte activation following mechanical loading. It is a small short-lived molecule, which makes its real-time, quantitative monitoring difficult. However, recently we demonstrated that DAR-4M AM chromophore can be used for real-time quantitative monitoring of intracellular NO production in individual cells following mechanical loading. Here we studied if a single mechanically stimulated osteocyte communicates with, and thus activates its surrounding cells via extracellular soluble factors. We monitored quantitatively intracellular NO production in the stimulated osteocyte and in its surrounding osteocytes, which were not interconnected. Mechanical stimulation by microneedle of a single-MLO-Y4 osteocyte-like cell upregulated the average intracellular NO production by 94% in the stimulated cell, and by 31-150% in the surrounding osteocytes. In conclusion, a single osteocyte can disseminate a mechanical stimulus to its surrounding osteocytes via extracellular soluble signalling factors. This reinforces the putative mechanosensory role of osteocytes, and demonstrates a possible mechanism by which a single mechanically stimulated osteocyte can communicate with other cells in a BMU, which might help to better understand the intricacies of intercellular interactions in BMUs and thus bone remodelling.  相似文献   

16.
Osteocytes have been suggested to play a role in the regulation of bone resorption, although their effect on bone turnover has remained controversial. In order to study this open question, we developed an organ culture system based on isolated rat calvaria, where the osteocyte viability and its effect on osteoclastic bone resorption can be monitored. Our results suggest that osteocytes are constitutively negative regulators of osteoclastic activity. Osteoclasts, which were cultured on calvarial slices with living osteocytes inside, failed to form actin rings which are the hallmarks of resorbing cells. A similar inhibitory effect was also achieved by the conditioned medium obtained from calvarial organ culture, suggesting that living osteocytes produce yet unrecognized osteoclast inhibitors. On the contrary, when osteocyte apoptosis was induced, this inhibitory effect disappeared and strong osteoclastic bone resorption activity was observed. Thus, local apoptosis of osteocytes may play a major role in triggering local bone remodeling.  相似文献   

17.
The strong correlation between a bone's architectural properties and the mechanical forces that it experiences has long been attributed to the existence of a cell that not only detects mechanical load but also structurally adapts the bone matrix to counter it. One of the most likely cellular candidates for such a "mechanostat" is the osteocyte, which resides within the mineralized bone matrix and is perfectly situated to detect mechanically induced signals. However, as osteocytes can neither form nor resorb bone, it has been hypothesized that they orchestrate mechanically induced bone remodeling by coordinating the actions of cells residing on the bone surface, such as osteoblasts. To investigate this hypothesis, we developed a novel osteocyte-osteoblast coculture model that mimics in vivo systems by permitting us to expose osteocytes to physiological levels of fluid shear while shielding osteoblasts from it. Our results show that osteocytes exposed to a fluid shear rate of 4.4 dyn/cm2 rapidly increase the alkaline phosphatase activity of the shielded osteoblasts and that osteocytic-osteoblastic physical contact is a prerequisite. Furthermore, both functional gap junctional intercellular communication and the mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 signaling pathway are essential components in the osteoblastic response to osteocyte communicated mechanical signals. By utilizing other nonosteocytic coculture models, we also show that the ability to mediate osteoblastic alkaline phosphatase levels in response to the application of fluid shear is a phenomena unique to osteocytes and is not reproduced by other mesenchymal cell types. osteocyte; osteoblast; fluid-flow; coculture; mechanical stimulation; gap junction; intercellular communication  相似文献   

18.
Age-related bone loss is a major cause of osteoporosis and osteoporotic fractures in the elderly. However, the underlying molecular mechanism of age-related bone loss is still poorly understood. The aim of this study was to clarify whether autophagy in osteocytes was involved in age-related bone loss. Male Sprague–Dawley (SD) rats in 3, 9, and 24 month old were used to mimic the age-related bone loss in men. Micro-CT evaluation, histomorphometric analysis, and measurement of bone turnover rate verified age-related bone loss in the male SD rats. Immunofluorescent histochemistry, RT-PCR, and Western blot assessment demonstrated that the expression of LC3-II, LC3-II/I, Beclin-1, and Ulk-1 in the osteocytes decreased with age, while SQSTM1/p62 and apoptosis in the osteocytes increased. A significant correlation between the markers of osteocyte autophagy and bone mineral density in the proximal tibia was revealed. However, osteocyte autophagy was not correlated with osteocyte apoptosis in the process of aging. These results suggested that osteocyte autophagy was possibly involved in the age-related bone loss. Decreased activity of osteocyte autophagy independent of apoptosis might contribute to the age-related bone loss in senile osteoporosis.  相似文献   

19.
We recently observed that insertion of unloaded rest between each load cycle substantially enhanced bone formation induced by mild loading regimens. To begin to explore this result, we have developed an agent based model for real-time signaling induced when osteocytic networks are challenged by mechanical stimuli. In the model, activity induced in individual osteocytes were governed by the following cellular functions: (1) threshold levels of tissue strain magnitudes were required to initiate and maximally activate cells, (2) cell activity beyond thresholds were propagated within localized neighborhoods and influenced recipient cell activity, (3) cellular activity was modulated by 'molecular' stores and the rates at which stores were replenished when cells were quiescent. Using this model, the real-time response of osteocyte networks was determined as the average of individual cell activity. While not explicitly embedded within the model, interactions between cellular functions served as positive, negative, and end-point feedback mechanisms and resulted in unique real-time network responses to distinct mechanical stimuli. Specifically, the real-time network response to cyclic stimuli consisted of a large magnitude transient followed by low-level steady state fluctuations, while rest-inserted stimuli induced multiple secondary transients. Analysis of interaction patterns suggested that rest-inserted stimuli induced this enhanced and sustained signaling within osteocytic networks by enabling cell recovery of expended molecular stores and by efficiently utilizing properties inherent to cell-cell communication in bone. Importantly, this emergence based approach suggested mechanisms potentially underlying the benefit of rest-inserted stimuli and provides a unique framework for a broader exploration of mechanotransduction function within bone.  相似文献   

20.
Osteocytes are thought to orchestrate bone remodeling, but it is unclear exactly how osteocytes influence neighboring bone cells. Here, we tested whether osteocytes, osteoblasts, and periosteal fibroblasts subjected to pulsating fluid flow (PFF) produce soluble factors that modulate the proliferation and differentiation of cultured osteoblasts and periosteal fibroblasts. We found that osteocyte PFF conditioned medium (CM) inhibited bone cell proliferation, and osteocytes produced the strongest inhibition of proliferation compared to osteoblasts and periosteal fibroblasts. The nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) attenuated the inhibitory effects of osteocyte PFF CM, suggesting that a change in NO release is at least partially responsible for the inhibitory effects of osteocyte PFF CM. Furthermore, osteocyte PFF CM stimulated osteoblast differentiation measured as increased alkaline phosphatase activity, and l-NAME decreased the stimulatory effects of osteocyte PFF CM on osteoblast differentiation. We conclude that osteocytes subjected to PFF inhibit proliferation but stimulate differentiation of osteoblasts in vitro via soluble factors and that the release of these soluble factors was at least partially dependent on the activation of a NO pathway in osteocytes in response to PFF. Thus, the osteocyte appears to be more responsive to PFF than the osteoblast or periosteal fibroblast with respect to the production of soluble signaling molecules affecting osteoblast proliferation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号