首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FtsH is an ATP-dependent metalloprotease present as a hexameric heterocomplex in thylakoid membranes. Encoded in the Arabidopsis thaliana YELLOW VARIEGATED2 (VAR2) locus, FtsH2 is one isoform among major Type A (FtsH1/5) and Type B (FtsH2/8) isomers. Mutants lacking FtsH2 (var2) and FtsH5 (var1) are characterized by a typical leaf-variegated phenotype. The functional importance of the catalytic center (comprised by the zinc binding domain) in FtsH2 was assessed in this study by generating transgenic plants that ectopically expressed FtsH2(488), a proteolytically inactive version of FtsH2. The resulting amino acid substitution inhibited FtsH protease activity in vivo when introduced into Escherichia coli FtsH. By contrast, expression of FtsH2(488) rescued not only leaf variegation in var2 but also seedling lethality in var2 ftsh8, suggesting that the protease activity of Type B isomers is completely dispensable, which implies that the chloroplastic FtsH complex has protease sites in excess and that they act redundantly rather than coordinately. However, expression of FtsH2(488) did not fully rescue leaf variegation in var1 var2 because the overall FtsH levels were reduced under this background. Applying an inducible promoter to our complementation analysis revealed that rescue of leaf variegation indeed depends on the overall amount of FtsH. Our results elucidate protein activity and its amount as important factors for the function of FtsH heterocomplexes that are composed of multiple isoforms in the thylakoid membrane.  相似文献   

2.
Variegated plants have green- and white-sectored leaves. Cells in the green sectors contain morphologically normal chloroplasts, whereas cells in the white sectors contain non-pigmented plastids that lack organized lamellar structures. Many variegations are caused by mutations in nuclear genes that affect plastid function, yet in only a few cases have the responsible genes been cloned. We show that mutations in the nuclear VAR2 locus of Arabidopsis cause variegation due to loss of a chloroplast thylakoid membrane protein that bears similarity to the FtsH family of AAA proteins (ATPases associated with diverse cellular activities). Escherichia coli FtsH is a chaperone metalloprotease that functions in a number of diverse membrane-associated events. Although FtsH homologs have been identified in multicellular organisms, their functions and activities are largely unknown; we provide genetic in vivo evidence that VAR2 functions in thylakoid membrane biogenesis. We have isolated four var2 alleles and they have allowed us to define domains of the protein that are required for activity. These include two putative ATP-binding sites. VAR2 protein amounts generally correlate with the severity of the var2 mutant phenotype. One allele lacks detectable VAR2 protein, suggesting that the mechanism of var2 variegation involves the action of a redundant activity in the green sectors. We conclude that redundant activities may be a general mechanism to explain nuclear gene-induced plant variegations.  相似文献   

3.
An Arabidopsis thaliana leaf-variegated mutant yellow variegated2 (var2) results from loss of FtsH2, a major component of the chloroplast FtsH complex. FtsH is an ATP-dependent metalloprotease in thylakoid membranes and degrades several chloroplastic proteins. To understand the role of proteolysis by FtsH and mechanisms leading to leaf variegation, we characterized the second-site recessive mutation fu-gaeri1 (fug1) that suppressed leaf variegation of var2. Map-based cloning and subsequent characterization of the FUG1 locus demonstrated that it encodes a protein homologous to prokaryotic translation initiation factor 2 (cpIF2) located in chloroplasts. We show evidence that cpIF2 indeed functions in chloroplast protein synthesis in vivo. Suppression of leaf variegation by fug1 is observed not only in var2 but also in var1 (lacking FtsH5) and var1 var2. Thus, suppression of leaf variegation caused by loss of FtsHs is most likely attributed to reduced protein synthesis in chloroplasts. This hypothesis was further supported by the observation that another viable mutation in chloroplast translation elongation factor G also suppresses leaf variegation in var2. We propose that the balance between protein synthesis and degradation is one of the determining factors leading to the variegated phenotype in Arabidopsis leaves.  相似文献   

4.
5.
Arabidopsis yellow variegated1 (VAR1) and VAR2 are separate loci that encode similar chloroplast FtsH proteases. To date, FtsH is the best-characterized protease in thylakoid membranes involved in the turnover of photosynthetic protein complexes. It comprises a protein family that is encoded by 12 different nuclear genes in Arabidopsis. We show here that nine FtsH proteins are located in the chloroplasts. Mutations in either VAR1 or VAR2 cause typical leaf variegation and sensitivity to photoinhibition. By contrast, none of these phenotypes was observed in T-DNA insertion mutants in other ftsH genes (ftsh1, ftsh6, and ftsh8) closely related to VAR1 and VAR2. This finding suggests that VAR1 and VAR2 play a predominant role in the photosystem II repair cycle in thylakoid membranes. By generating VAR1- and VAR2-specific antibodies, we found that loss of either VAR1 or VAR2 results in the decreased accumulation of the other. Thus, the genetic nonredundancy between VAR1 and VAR2 could be attributed to their coordinated regulation at the protein level. These observations led us to examine whether VAR1 and VAR2 form a complex. Sucrose density gradient and gel filtration analyses revealed a complex of approximately 400 to 450 kD, probably representing a hexamer. Furthermore, VAR1 and VAR2 were shown to coprecipitate by immunoprecipitation using VAR1- and VAR2-specific antibodies. The majority of VAR1 appears to exist as heterocomplexes with VAR2, whereas VAR2 may be present as homocomplexes as well. Based on these results, we conclude that VAR1 and VAR2 are the major components of an FtsH complex involved in the repair of photodamaged proteins in thylakoid membranes.  相似文献   

6.
Variegated leaves are often caused by a nuclear recessive mutation in higher plants. Characterization of the gene responsible for variegation has shown to provide several pathways involved in plastid differentiation. Here we describe an Arabidopsis variegated mutant isolated by T-DNA tagging. The mutant displayed green and yellow sectors in all green tissues except for cotyledons. Cells in the yellow sector of the mutant contained both normal-appearing and mutant chloroplasts. The isolated mutant was shown to be an allele of the previously reported mutant, yellow variegated (var2). Cloning and molecular characterization of the VAR2 locus revealed that it potentially encodes a chloroplastic homologue of FtsH, an ATP-dependent metalloprotease that belongs to a large protein family involved in various cellular functions. ftsH-like genes appear to comprise a small gene family in Arabidopsis genome, since at least six homologues were found in addition to VAR2. Dispensability of VAR2 was therefore explained by the redundancy of genes coding for FstHs. In the yellow regions of the mutant leaves, accumulation of photosynthetic protein components in the thylakoid membrane appeared to be impaired. Based on the role of FtsH in a protein degradation pathway in plastids, we propose a possibility that VAR2 is required for plastid differentiation by avoiding partial photooxidation of developing chloroplasts.  相似文献   

7.
Variegation mutants are ideal model systems to study chloroplast biogenesis.We are interested in variegations whose green and whitesectored leaves arise as a consequence of the action of nuclear recessive genes.In this review,we focus on the Arabidopsis var2 variegation mutant,and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation.VAR2 is a subunit of the chloroplast FtsH complex,which is involved in turnover of the Photosystem Ⅱ reaction center D1 protein,as well as in other processes required for the development and maintenance of the photosynthetic apparatus.The cells in green sectors of var2have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lameliae.To explain the mechanism of var2 variegation,we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2.To gain insight into these activities,second-site suppressor screens have been carried out to obtain mutants with nonvariegation phenotypes.Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression,including an unexpected link between var2 variegation and chloroplast translation.  相似文献   

8.
Variegation mutants are ideal model systems to study chloroplast biogenesis. We are interested in variegations whose green and whitesectored leaves arise as a consequence of the action of nuclear recessive genes. In this review, we focus on the Arabidopsis var2 variegation mutant, and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation. VAR2 is a subunit of the chloroplast FtsH complex, which is involved in turnover of the Photosystem II reaction center D1 protein, as well as in other processes required for the development and maintenance of the photosynthetic apparatus. The cells in green sectors of var2 have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lamellae. To explain the mechanism of var2 variegation, we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2. To gain insight into these activities, second-site suppressor screens have been carried out to obtain mutants with nonvariegation phenotypes. Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression, including an unexpected link between var2 variegation and chloroplast translation.  相似文献   

9.
10.
11.
Plants, as sessile organisms, employ multiple mechanisms to adapt to the seasonal and daily temperature fluctuations associated with their habitats. Here, we provide genetic and physiological evidence that the FtsH11 protease of Arabidopsis contributes to the overall tolerance of the plant to elevated temperatures. To identify the various mechanisms of thermotolerance in plants, we isolated a series of Arabidopsis thaliana thermo-sensitive mutants (atts) that fail to acquire thermotolerance after pre-conditioning at 38 degrees C. Two allelic mutants, atts244 and atts405, were found to be both highly susceptible to moderately elevated temperatures and defective in acquired thermotolerance. The growth and development of the mutant plants at all stages examined were arrested after exposure to temperatures above 30 degrees C, which are permissive conditions for wild-type plants. The affected gene in atts244 was identified through map-based cloning and encodes a chloroplast targeted FtsH protease, FtsH11. The Arabidopsis genome contains 12 predicted FtsH protease genes, with all previously characterized FtsH genes playing roles in the alleviation of light stress through the degradation of unassembled thylakoid membrane proteins and photodamaged photosystem II D1 protein. Photosynthetic capability, as measured by chlorophyll content (chl a/b ratios) and PSII quantum yield, is greatly reduced in the leaves of FtsH11 mutants when exposed to the moderately high temperature of 30 degrees C. Under high light conditions, however, FtsH11 mutants and wild-type plants showed no significant difference in photosynthesis capacity. Our results support a direct role for the A. thaliana FtsH11-encoded protease in thermotolerance, a function previously reported for bacterial and yeast FtsH proteases but not for those from plants.  相似文献   

12.
FtsH is an evolutionary conserved membrane-bound metalloprotease complex. While in most prokaryotes FtsH is encoded by a single gene, multiple FtsH genes are found in eukaryotes. Genetic and biochemical data suggest that the Arabidopsis chloroplast FtsH is a hetero-hexamer. This raises the question why photosynthetic organisms require a heteromeric complex, whereas in most bacteria a homomeric one is sufficient. To gain structural information of the possible complexes, the Arabidopsis FtsH2 (type B) and FtsH5 (type A) were modeled. An in silico study with mixed models of FtsH2/5 suggests that heteromeric hexamer structure with ratio of 4:2 is more likely to exists. Specifically, calculation of the buried surface area at the interfaces between neighboring subunits revealed that a hetero-complex should be thermodynamically more stable than a homo-hexamer, due to the presence of additional hydrophobic and hydrophilic interactions. To biochemically assess this model, we generated Arabidopsis transgenic plants, expressing epitope-tagged FtsH2 and immuno-purified the protein. Mass-spectrometry analysis showed that FtsH2 is associated with FtsH1, FtsH5 and FtsH8. Interestingly, we found that 'type B' subunits (FtsH2 and FtsH8) were 2-3 fold more abundant than 'type A' (FtsH1 and FtsH5). The biochemical data corroborate the in silico model and suggest that the thylakoid FtsH hexamer is composed of two 'type A' and four 'type B' subunits.  相似文献   

13.
FtsH proteases in chloroplasts and cyanobacteria   总被引:6,自引:0,他引:6  
FtsH is a membrane-bound ATP-dependent metalloprotease complex found in prokaryotes and organelles of eukaryotic cells. It consists of one or two trans -membrane helices at its amino-terminus, a highly conserved ATPase domain, which relates it to the AAA protein family, and a zinc-binding domain towards its carboxy-terminus that serves as the proteolytic site. Most bacteria contain a single FtsH gene, but the cyanobacterium Synechocystis has four. The Arabidopsis thaliana genome contains 12 genes encoding FtsH proteins, nine of them can be targeted to chloroplasts, whereas the other three are mitochondrial. Chloroplast FtsH protease is located in the thylakoid membrane, where it forms complexes, most likely hexamers, whose ATPase and proteolytic domains are exposed to the stroma. It is involved in the degradation of the D1 protein of photosystem II reaction centre during its repair from photoinhibition, as well as in the degradation of unassembled proteins in the thylakoid and the stroma. In Arabidopsis , FtsH2 is the most abundant isomer, followed by FtsH5, 8 and 1. This hierarchy is well reflected in the severity of the variegated phenotype of mutants in these genes.  相似文献   

14.
Arabidopsis var1 and var2 mutants exhibit leaf variegation. VAR1 and VAR2 encode similar FtsH metalloproteases (FtsH5 and FtsH2, respectively). We have previously found many variegated mutants to be allelic to var2. Each mutant was shown to express a different degree of variegation, and the formation of white sectors was enhanced in severely variegated alleles when these alleles were grown at low temperature. VAR1/FtsH5 and VAR2/FtsH2 levels were mutually affected even in the weak alleles, confirming our previous observation that the two proteins form a hetero complex. In this study, the sites of the mutations in these var2 alleles were determined. We isolated eight point mutations. Five alleles resulted in an amino acid substitution. Three of the five amino acid substitutions occurred in Walker A and B motifs of the ATP-binding site, and one occurred in the central pore motif. These mutations were considered to profoundly suppress the ATPase and protease activities. In contrast, one mutation was found in a region that contained no obvious signature motifs, but a neighboring sequence, Gly–Ala–Asp, was highly conserved among the members of the AAA protein family. Site-directed mutagenesis of the corresponding residue in E. coli FtsH indeed showed that this residue is necessary for proper ATP hydrolysis and proteolysis. Based on these results, we propose that the conserved Gly–Ala–Asp motif plays an important role in FtsH activity. Thus, characterization of the var2 alleles could help to identify the physiologically important domain of FtsH.  相似文献   

15.
FtsHs are a well-characterized family of membrane bound proteases containing an AAA (ATPase associated with various cellular activities) and a Zn(2+) metalloprotease domain. FtsH proteases are found in eubacteria, animals and plants and are known to have a crucial role in housekeeping proteolysis of membrane proteins. In Arabidopsis thaliana, 12 FtsH family members are present (FtsH 1-12) and their subcellular localization is restricted to mitochondria and chloroplasts. In addition, five genes coding for proteins homologous to FtsH (FtsHi 1-5) have been detected in the genome, lacking the conserved zinc-binding motif HEXXH, which presumably renders them inactive for proteolysis. These inactive FtsHs as well as nine of the active FtsHs are thought to be localized in the chloroplast. In this article, we shortly summarize the recent findings on plastidic FtsH proteases in text and figures. We will mainly focus on FtsH 1, 2, 5 and 8 localized in the thylakoid membrane and known for their importance in photosynthesis.  相似文献   

16.
17.
PPF1是一个与植物营养生长相关的基因。它编码的产物可能是一个膜蛋白并与拟南芥叶绿体中的类囊体蛋白ALB3有很高的同源性。免疫电镜分析表明PPF1蛋白同样主要定位于类囊体膜 ,而且在短日照G2豌豆开花两周后仍发育良好的叶绿体中有很高的表达 ,在长日照豌豆同时期非正常叶绿体中丰度非常低。对转基因拟南芥和野生型植株的叶片衰老进程比较发现 ,PPF1在拟南芥中的过量表达可以延缓叶片的衰老 ,而用PPF1反义mRNA抑制拟南芥中的同源基因ALB3则明显加快叶片衰老速度。对转基因拟南芥的超微结构分析显示 ,PPF1在拟南芥中过量表达时 ,转基因植株的叶绿体比野生型植株的叶绿体大并含有更多的基粒和基质类囊体膜 ;相反 ,反义PPF1表达抑制其在拟南芥中的同源物时 ,转基因植株的叶绿体比野生型植株的叶绿体小并含有较少的基粒和发育较差的类囊体膜系统。这些数据表明叶绿体的发育状况与PPF1或拟南芥同源物ALB3的表达水平呈正相关。我们的结果提示PPF1基因可能通过控制叶绿体的发育状况来调节植物的发育。  相似文献   

18.
19.
The Arabidopsis E3 ligase AtCHIP was found to interact with FtsH1, a subunit of the chloroplast FtsH protease complex. FtsH1 can be ubiquitylated by AtCHIP in vitro, and the steady-state level of FtsH1 is reduced in AtCHIP-over-expressing plants under high-intensity light conditions, suggesting that the ubiquitylation of FtsH1 by AtCHIP might lead to the degradation of FtsH1 in vivo. Furthermore, the steady-state level of another subunit of the chloroplast FtsH protease complex, FtsH2, is also reduced in AtCHIP-over-expressing plants under high-intensity light conditions, and FtsH2 interacts physically with AtCHIP in vivo, suggesting the possibility that FtsH2 is also a substrate protein for AtCHIP in plant cells. A substrate of FtsH protease in vivo, the photosystem II reaction center protein D1, is not efficiently removed by FtsH in AtCHIP-over-expressing plants under high-intensity light conditions, supporting the assumption that FtsH subunits are substrates of AtCHIP in vivo, and that AtCHIP over-expression may lead to a reduced level of FtsH in chloroplasts. AtCHIP interacts with cytosolic Hsp70 and the precursors of FtsH1 and FtsH2 in the cytoplasm, and Hsp70 also interacts with FtsH1, and these protein-protein interactions appear to be increased under high-intensity light conditions, suggesting that Hsp70 might be partly responsible for the increased degradation of the substrates of Hsp70, such as FtsH1 and FtsH2, in AtCHIP-over-expressing plants under high-intensity light conditions. Therefore, AtCHIP, together with Hsp70, may play an important role in protein quality control in chloroplasts.  相似文献   

20.
The Arabidopsis thylakoid FtsH protease complex is composed of FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. Type A and type B subunits display a high degree of sequence identity throughout their mature domains, but no similarity in their amino-terminal targeting peptide regions. In chloroplast import assays, FtsH2 and FtsH5 were imported and subsequently integrated into thylakoids by a two-step processing mechanism that resulted in an amino-proximal lumenal domain, a single transmembrane anchor, and a carboxyl proximal stromal domain. FtsH2 integration into washed thylakoids was entirely dependent on the proton gradient, whereas FtsH5 integration was dependent on NTPs, suggesting their integration by Tat and Sec pathways, respectively. This finding was corroborated by in organello competition and by antibody inhibition experiments. A series of constructs were made in order to understand the molecular basis for different integration pathways. The amino proximal domains through the transmembrane anchors were sufficient for proper integration as demonstrated with carboxyl-truncated versions of FtsH2 and FtsH5. The mature FtsH2 protein was found to be incompatible with the Sec machinery as determined with targeting peptide-swapping experiments. Incompatibility does not appear to be determined by any specific element in the FtsH2 domain as no single domain was incompatible with Sec transport. This suggests an incompatible structure that requires the intact FtsH2. That the highly homologous type A and type B subunits of the same multimeric complex use different integration pathways is a striking example of the notion that membrane insertion pathways have evolved to accommodate structural features of their respective substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号