首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Cell signaling mediated by P2X7 receptors (P2X7R) has been suggested to be involved in epileptogenesis, via modulation of intracellular calcium levels, excitotoxicity, activation of inflammatory cascades, and cell death, among other mechanisms. These processes have been described to be involved in pilocarpine-induced status epilepticus (SE) and contribute to hyperexcitability, resulting in spontaneous and recurrent seizures. Here, we aimed to investigate the role of P2X7R in epileptogenesis in vivo using RNA interference (RNAi) to inhibit the expression of this receptor. Small interfering RNA (siRNA) targeting P2X7R mRNA was injected into the lateral ventricles (icv) 6 h after SE. Four groups were studied: Saline-Vehicle, Saline-siRNA, Pilo-Vehicle, and Pilo-siRNA. P2X7R was quantified by western blotting and neuronal death assessed by Fluoro-Jade B histochemistry. The hippocampal volume (edema) was determined 48 h following RNAi. Behavioral parameters as latency to the appearance of spontaneous seizures and the number of seizures were determined until 60 days after the SE onset. The Saline-siRNA and Pilo-siRNA groups showed a 43 and 37% reduction, respectively, in P2X7R protein levels compared to respective vehicle groups. Neuroprotection was observed in CA1 and CA3 of the Pilo-siRNA group compared to Pilo-Vehicle. P2X7R silencing in pilocarpine group reversed the increase in the edema detected in the hilus, suprapyramidal dentate gyrus, CA1, and CA3; reduced mortality rate following SE; increased the time to onset of spontaneous seizure; and reduced the number of seizures, when compared to the Pilo-Vehicle group. Therefore, our data highlights the potential of P2X7R as a therapeutic target for the adjunct treatment of epilepsy.  相似文献   

2.
Inflammation contributes to liver injury in acetaminophen (APAP) hepatotoxicity in mice and is triggered by stimulation of immune cells. The purinergic receptor P2X7 is upstream of the nod-like receptor family, pryin domain containing-3 (NLRP3) inflammasome in immune cells and is activated by ATP and NAD that serve as damage-associated molecular patterns. APAP hepatotoxicity was assessed in mice genetically deficient in P2X7, the key inflammatory receptor for nucleotides (P2X7-/-), and in wild-type mice. P2X7-/- mice had significantly decreased APAP-induced liver necrosis. In addition, APAP-poisoned mice were treated with the specific P2X7 antagonist A438079 or etheno-NAD, a competitive antagonist of NAD. Pre- or posttreatment with A438079 significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury in wild-type but not P2X7-/- mice. Pretreatment with etheno-NAD also significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury. In addition, APAP toxicity in mice lacking the plasma membrane ecto-NTPDase CD39 (CD39-/-) that metabolizes ATP was examined in parallel with the use of soluble apyrase to deplete extracellular ATP in wild-type mice. CD39-/- mice had increased APAP-induced hemorrhage and mortality, whereas apyrase also decreased APAP-induced mortality. Kupffer cells were treated with extracellular ATP to assess P2X7-dependent inflammasome activation. P2X7 was required for ATP-stimulated IL-1β release. In conclusion, P2X7 and exposure to the ligands ATP and NAD are required for manifestations of APAP-induced hepatotoxicity.  相似文献   

3.
A key component of the response to DNA damage caused by ionizing radiation is DNA repair. Release of extracellular nucleotides, such as ATP, from cells plays a role in signaling via P2 receptors. We show here that release of ATP, followed by activation of P2Y receptors, is involved in the response to γ-irradiation-induced DNA damage. Formation of phosphorylated histone variant H2AX (γH2AX) foci, which are induced in nuclei by DNA damage and contribute to accumulation of DNA-repair factors, was increased at 1-3h after γ-ray irradiation (2.0Gy) of human lung cancer A549 cells. Focus formation was suppressed by pre-treatment with the ecto-nucleotidase apyrase. Pre-treatment with ecto-nucleotidase inhibitor ARL67156 or post-treatment with ATP or UTP facilitated induction of γH2AX, indicating that extracellular nucleotides play a role in induction of γH2AX foci. Next, we examined the effect of P2 receptor inhibitors on activation of ataxia telangiectasia mutated (ATM; a protein kinase) and accumulation of 53BP1 (a DNA repair factor), both of which are important for DNA repair, at DNA damage sites. P2Y6 receptor antagonist MRS2578, P2Y12 receptor antagonist clopidogrel, and P2X7 receptor antagonists A438079 and oxATP significantly inhibited these processes. Release of ATP was detected within 2.5min after irradiation, but was blocked by A438079. Activation of ATM and accumulation of 53BP1 were decreased in P2Y6 or P2Y12 receptor-knockdown cells. We conclude that autocrine/paracrine signaling through P2X7-dependent ATP release and activation of P2Y6 and P2Y12 receptors serves to amplify the cellular response to DNA damage caused by γ-irradiation.  相似文献   

4.
Current responses from CA1 neurons and stratum oriens astrocytes were recorded from hippocampal brain slices by means of the whole-cell patch-clamp technique. Anoxic depolarization (AD) was induced by an oxygen/glucose-deprived (OGD) medium also containing sodium iodoacetate and antimycin, in order to block glycolysis and oxidative phosphorylation, respectively. Anoxic depolarization has been reported to be due to the sudden increase of the extracellular K+ concentration and the accompanying explosive rise in glutamate concentration. We asked ourselves whether the release of ATP activating P2X7 receptors is also involved in the AD. Although, the AD was evoked in absolute synchrony in neurons and astrocytes, and the NMDA receptor antagonistic AP-5 depressed these responses, neither the non-selective P2 receptor antagonist PPADS, nor the highly selective P2X7 receptor antagonist A438079 interfered with the AD or its delay time in neurons/astrocytes after inducing chemical hypoxia. However, A438079, but not PPADS increased in astrocytes the slow inward current observed in a hypoxic medium. It is concluded that ATP co-released with glutamate by hypoxic stimulation has only a minor function in the present brain slice system.  相似文献   

5.
Protection of the heart from ischemia-reperfusion injury can be achieved by ischemic preconditioning and ischemic postconditioning. Previous studies revealed that a complex of pannexin-1 with the P2X(7) receptor forms a channel during ischemic preconditioning and ischemic postconditioning that results in the release of endogenous cardioprotectants. ATP binds to P2X(7) receptors, inducing the formation of a channel in association with pannexin-1. We hypothesized that this channel would provide a pathway for the release of these same cardioprotectants. Preconditioning-isolated perfused rat hearts with 0.4 μM ATP preceding 40 min of ischemia minimized infarct size upon subsequent reperfusion (5% of risk area) and resulted in >80% recovery of left ventricular developed pressure. Postconditioning with ATP after ischemia during reperfusion was also protective (6% infarct and 72% recovery of left ventricular developed pressure). Antagonists of both pannexin-1 (carbenoxolone and mefloquine) and P2X(7) receptors (brilliant blue G and A438079) blocked ATP pre- and postconditioning, indicating that ATP protection was elicited via the opening of a pannexin-1/P2X(7) channel. An antagonist of binding of the endogenous cardioprotectant sphingosine 1-phosphate to its G protein-coupled receptor diminished protection by ATP, which is also consistent with an ATP-dependent release of cardioprotectants. Suramin, an antagonist of binding of ATP (and ADP) to P2Y receptors, was without effect on ATP protection. Benzoyl benzoyl-ATP, a more specific P2X(7) agonist, was also a potent pre- and postconditioning agent and sensitive to blockade by pannexin-1/P2X(7) channel antagonists. The data point out for the first time the potential of P2X(7) agonists as cardioprotectants.  相似文献   

6.
The pancreatic stellate cells (PSCs) have complex roles in pancreas, including tissue repair and fibrosis. PSCs surround ATP releasing exocrine cells, but little is known about purinergic receptors and their function in PSCs. Our aim was to resolve whether PSCs express the multifunctional P2X7 receptor and elucidate how it regulates PSC viability. The number of PSCs isolated from wild type (WT) mice was 50% higher than those from the Pfizer P2X7 receptor knock out (KO) mice. The P2X7 receptor protein and mRNA of all known isoforms were expressed in WT PSCs, while KO PSCs only expressed truncated versions of the receptor. In culture, the proliferation rate of the KO PSCs was significantly lower. Inclusion of apyrase reduced the proliferation rate in both WT and KO PSCs, indicating importance of endogenous ATP. Exogenous ATP had a two-sided effect. Proliferation of both WT and KO cells was stimulated with ATP in a concentration-dependent manner with a maximum effect at 100 µM. At high ATP concentration (5 mM), WT PSCs, but not the KO PSCs died. The intracellular Ca2+ signals and proliferation rate induced by micromolar ATP concentrations were inhibited by the allosteric P2X7 receptor inhibitor az10606120. The P2X7 receptor-pore inhibitor A438079 partially prevented cell death induced by millimolar ATP concentrations. This study shows that ATP and P2X7 receptors are important regulators of PSC proliferation and death, and therefore might be potential targets for treatments of pancreatic fibrosis and cancer.  相似文献   

7.
Epilepsy is one of the most common neurological disorders which is diagnosed in around 65 million people worldwide. Clinically available antiepileptic drugs fail to control epileptic activity in about 30% of patients and they are merely symptomatic treatments and cannot cure or prevent epilepsy. There remains a need for searching new therapeutic strategies for epileptic disorders. The P2X7 receptor has been recently investigated as a new target in epilepsy treatment. Preclinical studies revealed that P2X7 receptor antagonists have anticonvulsant properties in some models of epilepsy. We aimed to investigate whether P2X7 receptor antagonist—brilliant blue G (BBG)—is able to change seizure threshold in three acute seizure models in mice, i.e., in the intravenous pentylenetetrazole seizure threshold, maximal electroshock seizure threshold and 6 Hz psychomotor seizure threshold tests. BBG was administered acutely (50–200 mg/kg, 30 min before the tests) and sub-chronically (25–100 mg/kg, once daily for seven consecutive days). Moreover, the chimney and grip strength tests were used to estimate the influence of BBG on the motor coordination and muscular strength in mice, respectively. Our results revealed only a week anticonvulsant potential of the studied P2X7 receptor antagonist because it showed anticonvulsant action only in the 6 Hz seizure test, both after acute and sub-chronic administration. BBG did not significantly influence seizure thresholds in the remaining tests. Motor coordination and muscular strength were not affected by the studied P2X7 receptor antagonist. In summary, BBG does not possess any remarkable anticonvulsant potential in acute seizure models in mice.  相似文献   

8.
Among purinergic P2X receptor (P2XR) channels, the P2X7R exhibits the most complex gating kinetics; the binding of orthosteric agonists at the ectodomain induces a conformational change in the receptor complex that favors a gating transition from closed to open and dilated states. Bath Ca(2+) affects P2X7R gating through a still uncharacterized mechanism: it could act by reducing the adenosine triphosphate(4-) (ATP(4-)) concentration (a form proposed to be the P2X7R orthosteric agonist), as an allosteric modulator, and/or by directly altering the selectivity of pore to cations. In this study, we combined biophysical and mathematical approaches to clarify the role of calcium in P2X7R gating. In naive receptors, bath calcium affected the activation permeability dynamics indirectly by decreasing the potency of orthosteric agonists in a concentration-dependent manner and independently of the concentrations of the free acid form of agonists and status of pannexin-1 (Panx1) channels. Bath calcium also facilitated the rates of receptor deactivation in a concentration-dependent manner but did not affect a progressive delay in receptor deactivation caused by repetitive agonist application. The effects of calcium on the kinetics of receptor deactivation were rapid and reversible. A438079, a potent orthosteric competitive antagonist, protected the rebinding effect of 2'(3')-O-4-benzoylbenzoyl)ATP on the kinetics of current decay during the washout period, but in the presence of A438079, calcium also increased the rate of receptor deactivation. The corresponding kinetic (Markov state) model indicated that the decrease in binding affinity leads to a decrease in current amplitudes and facilitation of receptor deactivation, both in an extracellular calcium concentration-dependent manner expressed as a Hill function. The results indicate that calcium in physiological concentrations acts as a negative allosteric modulator of P2X7R by decreasing the affinity of receptors for orthosteric ligand agonists, but not antagonists, and not by affecting the permeability dynamics directly or indirectly through Panx1 channels. We expect these results to generalize to other P2XRs.  相似文献   

9.
Extracellular adenosine triphosphate (ATP) and its receptor, P2X7 receptor (P2X7R), are playing an important role in the pathological process of renal ischemia-reperfusion injury, but their underlying mechanism remains unclear. Also, the effects of tubular epithelium-expressed P2X7 receptor on ischemia acute kidney injury is still unknown. The aim of this study is to clarify if this mechanism involves the activation of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in the renal tubular epithelial cells. In our research, we used male C57BL/6 wild type and P2X7R (−/−) mice, cultured human proximal tubular epithelial cells, and kidneys from acute kidney injury patients. Mice underwent for unilateral nephrectomy combined with the lateral renal pedicle clamping. Cultured cells were subjected to hypoxia/reoxygenation or ATP. Apyrase and A438079 were used to block the extracellular ATP/P2X7 receptor pathway. We also constructed radiation-induced bone marrow (BM) chimeras by using P2X7R (−/−) mice and P2X7R (+/+) wild-type mice. P2X7 receptor deficiency protected from renal ischemia-reperfusion injury and attenuated the formation of NLRP3 inflammasome. By using BM chimeras, we found a partial reduction of serum creatinine and less histological impairment in group wild-type BM to P2X7R (−/−) recipient, compared with group wild-type BM to wild-type recipient. In renal tubular epithelial cells, hypoxia/reoxygenation induced ATP release and extracellular ATP depletion reduced the expression of active IL-1β. ATP activated the NLRP3 inflammasome in renal tubular epithelial cells, which were blunted by transient silence of P2X7 receptor, as well as by P2X7 receptor blocking with A438079. In human samples, we found that patients with Stage 3 AKI had higher levels of P2X7 receptor expression than patients with Stage 1 or Stage 2. Extracellular ATP/P2X7 receptor axis blocking may protect renal tubular epithelial cells from ischemia-reperfusion injury through the regulation of NLRP3 inflammasome.Subject terms: Membrane proteins, Mechanisms of disease, Acute kidney injury  相似文献   

10.
We previously observed that activation of presynaptic P2X7 receptors located on rat cerebrocortical nerve terminals induced the release of glutamate through different modes: the channel conformation allowing Ca(2+) entry triggered exocytotic release, while the receptor itself functioned as a permeation pathway for the non-exocytotic glutamate release. Considering that exocytotic and non-exocytotic glutamate release evoked by the activation of P2X7 receptors might play a role in the control of glutamatergic synapses, we investigated whether calmidazolium (which has been found to inhibit small cation currents through recombinant P2X7 receptors, but not organic molecule permeation) could distinguish between P2X7-related exocytotic and non-exocytotic modes of glutamate release. We found that calmidazolium inhibited the intrasynaptosomal Ca(2+) response to P2X7 receptor activation and the Ca(2+)-dependent exocytotic glutamate release from rat cerebrocortical nerve terminals, but was ineffective against the Ca(2+)-independent glutamate release. The P2X7 competitive antagonist A-438079 eliminated both exocytotic and non-exocytotic P2X7 receptor-evoked glutamate release. Selective inhibition of exocytotic glutamate release indicates that calmidazolium inhibits events dependent on the function of native rat P2X7 receptors as Ca(2+) channels, and suggests that it can be used as a tool to dissociate P2X7-evoked exocytotic from non-exocytotic glutamate release.  相似文献   

11.
In the present study, we investigated the effects of micro-injecting 2-chloroadenosine (2-CADO; an adenosine receptor agonist) into the thalamus alone and with theophylline (a nonspecific adenosine receptor antagonist) pretreatment on pentylenetetrazol (PTZ)-induced tonic-clonic seizures in male Wistar albino rats. Following intrathalamic 2-CADO injection alone or theophylline pretreatment, 50 mg kg(-1) PTZ was given ip after 1 and 24 hrs. The duration of epileptic seizure activity was recorded by cortical electroencephalogram (EEG), and seizure severity was behaviorally scored. Intrathalamic 2-CADO administration induced significant decreases in both seizure duration and seizure severity scores at 1 and 24 hrs, but the effects were more abundant on the seizures induced after 24 hrs. On the other hand, pretreatment with theophylline prevented the inhibitor effect of 2-CADO on seizure activity and increased both seizure duration and seizure scores. Present results suggest that the activation of adenosine receptors in the thalamus may represent another anticonvulsant/modulatory site of adenosine action during the course of the PTZ-induced generalized tonic-clonic seizures and provide additional data for the involvement of the adenosinergic system in the generalized seizures model.  相似文献   

12.
Extracellular ATP induces cation fluxes in and impairs the growth of murine erythroleukemia (MEL) cells in a manner characteristic of the purinergic P2X7 receptor, however the presence of P2X7 in these cells is unknown. This study investigated whether MEL cells express functional P2X7. RT-PCR, immunoblotting and immunofluorescence staining demonstrated the presence of P2X7 in MEL cells. Cytofluorometric measurements demonstrated that ATP induced ethidium+ uptake into MEL cells in a concentration-dependent fashion and with an EC50 of ∼ 154 μM. The most potent P2X7 agonist 2′- and 3′-0(4-benzoylbenzoyl) ATP, but not ADP or UTP, induced ethidium+ uptake. ATP-induced ethidium+ and YO-PRO-12+ uptake were impaired by the P2X7 antagonist, A-438079. A colourmetric assay demonstrated that ATP impaired MEL cell growth. A cytofluorometric assay showed that ATP induced MEL cell death and that this process was impaired by A-438079. Finally, cytofluorometric measurements of Annexin-V binding and bio-maleimide staining demonstrated that ATP could induce rapid phosphatidylserine exposure and microparticle release in MEL cells respectively, both of which were impaired by A-438079. These results demonstrate that MEL cells express functional P2X7, and indicate that activation of this receptor may be important in the death and release of microparticles from red blood cells in vivo.  相似文献   

13.
Adenosine is an endogenous anticonvulsant that exerts its effects through A1 receptors. As the piriform/amygdala is a critical circuit for limbic seizure propagation, in this study, the role of basolateral amygdala A1 receptors on piriform cortex (PC)-kindled seizures was investigated. Rats were kindled by daily electrical stimulation of PC. In fully kindled animals, bilateral intra-amygdala N6-cyclohexyladenosine (CHA; 10-500 micromol/L, a selective A1 receptor agonist) had no effect on kindled-seizure parameters. However, bilateral intra-amygdala 2% lidocaine (reversal neuronal inhibitor) reduced the kindled seizure severity. There was significant increase in stage 4 latency and decrease in stage 5 duration. Bilateral lesion of basolateral amygdala of kindled animals (by electrical DC current) reduced the kindled seizure severity more dramatically. Our results showed afterdischarge duration, stage 5 duration, and seizure duration were decreased and stage 4 latency increased significantly. In addition, daily intra-amygdala CHA had no significant effect on PC kindling acquisition. Therefore, it may be concluded that although the basolateral amygdala neuronal activity has a critical role in the propagation of epileptic seizures from PC, the amygdala A1 receptors have no role in this regard. On the other hand, amygdala A1 receptors have no anticonvulsant or antiepileptogenic effect on PC-kindled seizures.  相似文献   

14.
Nucleotides are released from cells in response to mechanical stimuli and signal in an autocrine/paracrine manner through cell surface P2 receptors. P2rx7-/- mice exhibit diminished appositional growth of long bones and impaired responses to mechanical loading. We find that calvarial sutures are wider in P2rx7-/- mice. Functional P2X7 receptors are expressed on osteoblasts in situ and in vitro. Activation of P2X7 receptors by exogenous nucleotides stimulates expression of osteoblast markers and enhances mineralization in cultures of rat calvarial cells. Moreover, osteogenesis is suppressed in calvarial cell cultures from P2rx7-/- mice compared with the wild type. P2X7 receptors couple to production of the potent lipid mediators lysophosphatidic acid (LPA) and prostaglandin E2. Either an LPA receptor antagonist or cyclooxygenase (COX) inhibitors abolish the stimulatory effects of P2X7 receptor activation on osteogenesis. We conclude that P2X7 receptors enhance osteoblast function through a cell-autonomous mechanism. Furthermore, a novel signaling axis links P2X7 receptors to production of LPA and COX metabolites, which in turn stimulate osteogenesis.  相似文献   

15.
In this study, the effect of A1 and A2A adenosine receptor activity of the piriform cortex (PC) on amygdala-kindled seizures was investigated in rats. Animals were kindled by daily electrical stimulation of the amygdala. In fully kindled rats, N6-cyclohexyladenosine (CHA, a selective A1 agonist), 8-cyclopentyl-1,3-dimethylxanthine (CPT, a selective A1 antagonist), CGS21,680 hydrochloride (CGS, a selective A2A agonist), and ZM241,385 (ZM, a selective A2A antagonist) were microinjected bilaterally into the PC. Rats were stimulated 5 min post-drug microinjection and seizure parameters were measured. Results showed that intra-PC CHA (10 and 100 micromol/L) decreased the duration of both afterdischarge and stage 5 seizure and significantly increased the latency to stage 4 seizure. Intra-PC CPT increased afterdischarge and stage 5 seizure duration at the dose of 20 micromol/L. The anticonvulsant effect of CHA (100 micromol/L) was eliminated by CPT (10 micromol/L) pretreatment. On the other hand, neither intra-PC CGS nor ZM had a significant effect on kindled seizures. These results suggest that activity of A1, but not A2A, receptors of the PC have anticonvulsant effects on kindled seizures elicited from electrical stimulation of the amygdala.  相似文献   

16.
The potential to use Schwann cells (SCs) in neural repair for patients suffering from neurotrauma and neurodegenerative diseases is well recognized. However, significant cell death after transplantation hinders the clinical translation of SC-based therapies. Various factors may contribute to the death of transplanted cells. It is known that prolonged activation of P2X7 purinoceptors (P2X7R) can lead to death of certain types of cells. In this study, we show that rat SCs express P2X7R and exposure of cultured SCs to high concentrations of ATP (3–5 mM) or a P2X7R agonist, 2′(3′)-O-(4-benzoylbenzoyl)ATP (BzATP) induced significant cell death rapidly. High concentrations of ATP and BzATP increased ethidium uptake by SCs, indicating increased membrane permeability to large molecules, a typical feature of prolonged P2X7R activation. SC death, as well as ethidium uptake, induced by ATP was blocked by an irreversible P2X7R antagonist oxidized ATP (oxATP) or a reversible P2X7R antagonist A438079. oxATP also significantly inhibits the increase of intracellular free calcium induced by minimolar ATP concentrations. Furthermore, ATP did not cause death of SCs isolated from P2X7R-knockout mice. All these results suggest that P2X7R is responsible for ATP-induced SC death in vitro. When rat SCs were treated with oxATP before transplantation into uninjured rat spinal cord, 35% more SCs survived than untreated SCs 1 week after transplantation. Moreover, 58% more SCs isolated from P2X7R-knockout mice survived after being transplanted into rat spinal cord than SCs from wild-type mice. This further confirms that P2X7R is involved in the death of transplanted SCs. These results indicate that targeting P2X7R on SCs could be a potential strategy to improve the survival of transplanted cells. As many other types of cells, including neural stem cells, also express P2X7R, deactivating P2X7R may improve the survival of other types of transplanted cells.  相似文献   

17.
18.
Extracellular nucleotides regulate epithelial transport via luminal and basolateral P2 receptors. Renal epithelia express multiple P2 receptors, which mediate significant inhibition of solute absorption. Recently, we identified several P2 receptors in the medullary thick ascending limb (mTAL) including luminal and basolateral P2Y(2) receptors (Jensen ME, Odgaard E, Christensen MH, Praetorius HA, Leipziger J. J Am Soc Nephrol 18: 2062-2070, 2007). In addition, we found evidence for a basolateral P2X receptor. Here, we investigate the effect of basolateral ATP on NaCl absorption in isolated, perfused mouse mTALs using the electrical measurement of equivalent short-circuit current (I'(sc)). Nonstimulated mTALs transported at a rate of 1,197 ± 104 μA/cm(2) (n = 10), which was completely blockable with luminal furosemide (100 μM). Basolateral ATP (100 μM) acutely (1 min) and reversibly reduced the absorptive I'(sc). After 2 min, the reduction amounted to 24.4 ± 4.0% (n = 10). The nonselective P2 receptor antagonist suramin blocked the effect. P2Y receptors were found not to be involved in this effect. The P2X receptor agonist 2-methylthio ATP mimicked the ATP effect, and the P2X receptor antagonist periodate-oxidized ATP blocked it. In P2X(7)(-/-) mice, the ATP effect remained unaltered. In contrast, in P2X(4)(-/-) mice the ATP-induced inhibition of transport was reduced. A comprehensive molecular search identified P2X(4), P2X(5), and P2X(1) receptor subunit mRNA in isolated mouse mTALs. These data define that basolateral ATP exerts a significant inhibition of Na(+) absorption in mouse mTAL. Pharmacological, molecular, and knockout mouse data identify a role for the P2X(4) receptor. We suggest that other P2X subunits like P2X(5) are part of the P2X receptor complex. These data provide the novel perspective that an ionotropic receptor and thus a nonselective cation channel causes transport inhibition in an intact renal epithelium.  相似文献   

19.
The study aimed to investigate the hepatoprotective effects of purinergic receptor (P2X7R) antagonism by A438079 in liver damage. An experimental model of inflammation was performed by intraperitoneal (i.p.) lipopolysaccharide (LPS) administration in the rat. The groups were Control, A438079, dimethyl sulfoxide (DMSO), LPS, LPS + DMSO, and LPS + A438079. Following LPS (8 mg/kg) injection, A438079 (15 mg/kg) and DMSO (0.1 mL) were administrated (i.p) in the study groups. The blood and the liver tissues were removed for histological, biochemical, and western blot analyses. In the biochemical analysis, serum aspartate transaminase (AST) and alanine transaminase (ALT) concentrations, the tissue glutathione (GSH) level, and superoxide dismutase (SOD) activity dramatically decreased and malondialdehyde (MDA) level increased in the LPS and LPS + DMSO groups compared to the LPS + A438079 group. In the histological analysis, severe sinusoidal dilatation, necrotic hepatocytes, and inflammatory cell infiltration were observed in the LPS and LPS + DMSO groups while these effects were lessened in the LPS + A438079 group. The relative protein expression levels of P2X7R, Nf-kB-p65, IL-6, and Caspase-3 were significantly higher in the LPS and the LPS + DMSO groups than in the LPS + A438079 group. On the other hand, these protein expressions were considerably lower in the Control, A438079, and DMSO groups compared to the LPS + A438079 group. In addition, Bcl-2 protein expression was significantly lower in the LPS and the LPS + DMSO groups and higher in the LPS + A438079 group compared to the other groups. The protective effect of A438079 against LPS-induced hepatic inflammation may be related to P2X7R antagonism, inflammatory mediators, and apoptotic cell death.  相似文献   

20.
Witkin JM  Baez M  Yu J  Eiler WJ 《Life sciences》2008,83(9-10):377-380
Metabotropic glutamate mGlu5 receptors have been implicated in the regulation of seizures and have been suggested as a target against which discovery of novel anticonvulsants may be possible. However, the experimental literature is not consistent in reporting anticonvulsant efficacy of mGlu5 receptor antagonists. Additional assessment of this target was approached in the present study by comparing convulsions in wild-type (WT) and mGlu5 receptor null (knockout or KO) mice. Chemically induced seizures induced by a variety of mechanisms including pentylenetetrazole, N-methyl-d-aspartic acid (NMDA), cocaine, kainic acid, aminophylline, 4-aminopyridine, strychnine, and nicotine did not differentially increase clonic, clonic/tonic, or lethality in WT vs. mGlu5 receptor KO mice. The mGlu5 receptor antagonist 3-[(2-Methyl-1,3-thiazol-4-yl) ethynyl]-pyridine (MTEP) did not significantly prevent seizures induced by NMDA; in contrast, the uncompetitive NMDA receptor antagonist, dizocilpine, significantly prevented NMDA-induced seizures and lethality in both WT and KO mice. The present findings do not support the idea that mGlu5 receptors play as important a role in seizure control as previously speculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号