首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
High-fat (HF) diet induces hepatic steatosis that is a risk factor for noncommunicable diseases such as obesity, type 2 diabetes and cardiovascular disease. Previously, we found that HF feeding in rats increases the excretion of fecal bile acids (BAs), specifically 12α-hydroxylated (12αOH) BAs. Although the liver is the metabolic center in our body, the association between hepatic steatosis and 12αOH BAs in HF-fed rats is unclear. Thus, we investigated extensively BA composition in HF-fed rats and evaluated the association between hepatic steatosis and 12αOH BAs. Acclimated male inbred WKAH/HkmSlc rats were divided into two groups and fed either control or HF diet for 8 weeks. Feeding HF diet increased hepatic triglyceride and total cholesterol concentrations, which correlated positively with 12αOH BAs concentrations but not with non-12αOH BAs in the feces, portal plasma and liver. Accompanied by the increase in 12αOH BAs, the rats fed HF diet showed increased fat absorption and higher mRNA expression of liver Cidea. The enhancement of 12αOH BA secretion may contribute to hepatic steatosis by the promotion of dietary fat absorption and hepatic Cidea mRNA expression. The increase in 12αOH BAs was associated with enhanced liver cholesterol 7α-hydroxylase (Cyp7a1) and sterol 12α-hydroxylase (Cyp8b1) mRNA expression. There was a significant increase in 7α-hydroxycholesterol, a precursor of BAs, in the liver of HF-fed rats. Altogether, these data suggest that the HF diet increases preferentially 12αOH BAs synthesis by utilizing the accumulated hepatic cholesterol and enhancing mRNA expression of Cyp7a1 and Cyp8b1 in the liver.  相似文献   

3.
Obesity due to nutrient excess leads to chronic pathologies including type 2 diabetes and cardiovascular disease. Related to nutrient excess, FoxO1 has a role in regulating fatty acid uptake and oxidation and triglyceride (TG) storage by mechanisms that are largely unresolved. We examined the mechanism behind palmitate (PA)-induced TG accumulation in cardiomyocytes. To mimic lipid excess, rat ventricular myocytes were incubated with albumin-bound PA (1 mM) or rats were administered Intralipid (20%). PA-treated cardiomyocytes showed a substantial increase in TG accumulation, accompanied by amplification of nuclear migration of phospho-p38 and FoxO1, iNOS induction, and translocation of CD36 to the plasma membrane. PA also increased Cdc42 protein and its tyrosine nitration, thereby rearranging the cytoskeleton and facilitating CD36 translocation. These effects were duplicated by TNF-α and reversed by the iNOS inhibitor 1400 W. PA increased the nuclear interaction between FoxO1 and NF-κB, reduced the nuclear presence of PGC-1α, and downregulated expression of oxidative phosphorylation proteins. In vivo a robust increase in cardiac TGs after Intralipid administration was also associated with augmentation of nuclear FoxO1 and iNOS expression. Impeding this FoxO1-iNOS-CD36 pathway could decrease cardiac lipid accumulation and oxidative/nitrosative stress and help ameliorate the cardiovascular complications associated with obesity and diabetes.  相似文献   

4.
There is an increasing need to explore the mechanism of the progression of non-alcoholic fatty liver disease. Steroid metabolism is closely linked to hepatic steatosis and steroids are excreted as bile acids (BAs). Here, we demonstrated that feeding WKAH/HkmSlc inbred rats a diet supplemented with cholic acid (CA) at 0.5 g/kg for 13 weeks induced simple steatosis without obesity. Liver triglyceride and cholesterol levels were increased accompanied by mild elevation of aminotransferase activities. There were no signs of inflammation, insulin resistance, oxidative stress, or fibrosis. CA supplementation increased levels of CA and taurocholic acid (TCA) in enterohepatic circulation and deoxycholic acid (DCA) levels in cecum with an increased ratio of 12α-hydroxylated BAs to non-12α-hydroxylated BAs. Analyses of hepatic gene expression revealed no apparent feedback control of BA and cholesterol biosynthesis. CA feeding induced dysbiosis in cecal microbiota with enrichment of DCA producers, which underlines the increased cecal DCA levels. The mechanism of steatosis was increased expression of Srebp1 (positive regulator of liver lipogenesis) through activation of the liver X receptor by increased oxysterols in the CA-fed rats, especially 4β-hydroxycholesterol (4βOH) formed by upregulated expression of hepatic Cyp3a2, responsible for 4βOH formation. Multiple regression analyses identified portal TCA and cecal DCA as positive predictors for liver 4βOH levels. The possible mechanisms linking these predictors and upregulated expression of Cyp3a2 are discussed. Overall, our observations highlight the role of 12α-hydroxylated BAs in triggering liver lipogenesis and allow us to explore the mechanisms of hepatic steatosis onset, focusing on cholesterol and BA metabolism.  相似文献   

5.
FoxO1 integrates multiple metabolic pathways. Nutrient levels modulate FoxO1 acetylation, but the functional consequences of this posttranslational modification are unclear. To answer this question, we generated mice bearing alleles that encode constitutively acetylated and acetylation-defective FoxO1 proteins. Homozygosity for an allele mimicking constitutive acetylation (Foxo1(KQ/KQ)) results in embryonic lethality due to cardiac and angiogenesis defects. In contrast, mice homozygous for?a constitutively deacetylated Foxo1 allele (Foxo1(KR/KR)) display a unique metabolic phenotype of impaired insulin action on hepatic glucose metabolism but decreased plasma lipid levels and low respiratory quotient that are consistent with a state of preferential lipid usage. Moreover, Foxo1(KR/KR) mice show?a dissociation between weight gain and insulin resistance in predisposing conditions (high fat diet, diabetes, and insulin receptor mutations), possibly due to decreased cytokine production in adipose tissue. Thus, acetylation inactivates FoxO1 during nutrient excess whereas deacetylation selectively potentiates FoxO1 activity, protecting against excessive catabolism during nutrient deprivation.  相似文献   

6.
7.
Studies have shown linoleate could not only promote cell viability but also affect lipid metabolism in mammals. However, to what degree these effects are mediated by steatosis in goose primary hepatocytes is unknown. In this study, the effect of linoleate on the lipid metabolic homeostasis pathway was determined. We measured the mRNA levels of genes involved in triglyceride synthesis, lipid deposition, β-oxidation, and assembly and secretion of VLDL-TGs in goose (Anser cygnoides) primary hepatocytes. Linoleate significantly increased goose hepatocyte viability, and linoleate at 0.125 mM, 0.25 mM, 0.5 mM and 1.0 mM all showed a significant effect on TG accumulation. However, with increasing linoleate concentrations, the extracellular TG concentration and extracellular VLDL gradually decreased. DGAT1, DGAT2, PPARα, PPARγ, FoxO1, MTP, PLIN and CPT-1 mRNA was detected by real-time PCR. With increasing linoleate concentrations, the changes in DGAT1, DGAT2, PPARα and CPT-1 gene expression, which regulates hepatic TG synthesis and fatty acid oxidation, first increased and then decreased. Additionally, FoxO1 and MTP gene expression was reduced with increasing linoleate concentrations, and the change in PLIN gene expression was increased at all concentrations, similar to the regulation of intracellular TG accumulation. In conclusion, linoleate regulated TG accumulation and increased hepatocyte viability. The data suggest that linoleate does promote goose hepatocyte viability and steatosis, which may up-regulate TG synthesis-relevant gene expression, suppress assembly and secretion of VLDL-TGs, and increase fatty acid oxidation properly to function of goose primary hepatocytes.  相似文献   

8.
Elevated plasma triglyceride (TG) and reduced high density lipoprotein (HDL) concentrations are prominent features of metabolic syndrome (MS) and type 2 diabetes (T2D). Individuals with Tangier disease also have elevated plasma TG concentrations and a near absence of HDL, resulting from mutations in ATP binding cassette transporter A1 (ABCA1), which facilitates the efflux of cellular phospholipid and free cholesterol to assemble with apolipoprotein A-I (apoA-I), forming nascent HDL particles. In this review, we summarize studies focused on the regulation of hepatic very low density lipoprotein (VLDL) TG production, with particular attention on recent evidence connecting hepatic ABCA1 expression to VLDL, LDL, and HDL metabolism. Silencing ABCA1 in McArdle rat hepatoma cells results in diminished assembly of large (>10nm) nascent HDL particles, diminished PI3 kinase activation, and increased secretion of large, TG-enriched VLDL1 particles. Hepatocyte-specific ABCA1 knockout (HSKO) mice have a similar plasma lipid phenotype as Tangier disease subjects, with a two-fold elevation of plasma VLDL TG, 50% lower LDL, and 80% reduction in HDL concentrations. This lipid phenotype arises from increased hepatic secretion of VLDL1 particles, increased hepatic uptake of plasma LDL by the LDL receptor, elimination of nascent HDL particle assembly by the liver, and hypercatabolism of apoA-I by the kidney. These studies highlight a novel role for hepatic ABCA1 in the metabolism of all three major classes of plasma lipoproteins and provide a metabolic link between elevated TG and reduced HDL levels that are a common feature of Tangier disease, MS, and T2D. This article is part of a Special Issue entitled: Triglyceride Metabolism and Disease.  相似文献   

9.
Studies have shown that not only does palmitic acid promote triglyceride (TG) accumulation, but it also affects cell viability in in vitro steatosis models. However, to what degree these effects are mediated by steatosis in goose primary hepatocytes is unknown. In this study, the effects of palmitic acid on the lipid metabolism homeostasis pathway and on apoptosis were determined. The authors measured the mRNA levels of genes involved in TG synthesis, lipid deposition, fatty acid oxidation and the assembly and secretion of VLDL-TG in goose primary hepatocytes. The results indicated that palmitic acid can significantly reduce the activity of goose hepatocytes, and that palmitic acid had a significant effect on TG accumulation; however, with increasing palmitic acid concentrations, the extracellular TG and extracellular VLDL concentration gradually decreased. With increasing palmitic acid concentrations, the gene expression levels of DGAT1, DGAT2, PPARα, CPT-1, FoxO1 and MTTP (which regulate hepatic TG synthesis, fatty acid oxidation and the assembly and secretion of VLDL-TGs) first increased and then decreased; the change in PLIN gene expression was palmitic acid dose-dependent, similar to the regulatory mode of intracellular TG accumulation. In conclusion, this study clearly shows that palmitic acid can promote TG accumulation and induce apoptosis in goose primary hepatocytes, and this effect may be related to the lipid metabolism pathway.  相似文献   

10.
The gut microbiota is profoundly involved in glucose and lipid metabolism,in part by regulating bile acid(BA)metabolism and affecting multiple BA-receptor signaling pathways.BAs are synthesized in the liver by multi-step reactions catalyzed via two distinct routes,the classical pathway(producing the 12α-hy-droxylated primary BA,cholic acid),and the alternative pathway(producing the non-12α-hydroxylated primary BA,chenodeoxycholic acid).BA synthesis and excre-tion is a major pathway of cholesterol and lipid cata-bolism,and thus,is implicated in a variety of metabolic diseases including obesity,insulin resis-tance,and nonalcoholic fatty liver disease.Addition-ally,both oxysterols and BAs function as signaling molecules that activate multiple nuclear and mem-brane receptor-mediated signaling pathways in various tissues,regulating glucose,lipid homeostasis,inflam-mation,and energy expenditure.Modulating BA syn-thesis and composition to regulate BA signaling is an interesting and novel direction for developing thera-pies for metabolic disease.In this review,we sum-marize the most recent findings on the role of BA synthetic pathways,with a focus on the role of the alternative pathway,which has been under-investi-gated,in treating hyperglycemia and fatty liver dis-ease.We also discuss future perspectives to develop promising pharmacological strategies targeting the alternative BA synthetic pathway for the treatment of metabolic diseases.  相似文献   

11.
12.
Patients with severe malabsorption have abnormal lipid metabolism with low plasma cholesterol and frequently high triglyceride (TG) levels. The mechanisms behind these abnormalities and the respective roles of malabsorption itself and of the parenteral nutrition given to these patients are unclear. We measured endogenous lipids synthesis (cholesterol synthesis and hepatic lipogenesis) and the expression (mRNA concentrations in circulating mononuclear cells) of regulatory genes of cholesterol metabolism in 10 control subjects and 22 patients with severe malabsorption receiving (n = 18) or weaned of parenteral nutrition (n = 4). Patients had low plasma cholesterol (P < 0.01) and raised TG (P < 0.05) levels. Both fractional and absolute cholesterol synthesis (P < 0.001) and hepatic lipogenesis (P < 0.01) were increased. These abnormalities are independent of parenteral nutrition since they were present in patients receiving or weaned of parenteral nutrition. No relation between hepatic lipogenesis and plasma TG levels was found, suggesting that other metabolic abnormalities participated in hypertriglyceridemia. HMG-CoA reductase and LDL receptor mRNA levels were decreased (P < 0.05) in patients on long-term parenteral nutrition. HMG-CoA reductase mRNAs were normal in weaned patients.Severe malabsorption induces large increases of cholesterol synthesis and hepatic lipogenesis independently of the presence of parenteral nutrition. These abnormalities are probably due to the malabsorption of bile acids.  相似文献   

13.
Disruption of circadian clock timekeeping due to changes in the photoperiod enhances the risk of lipid metabolism disorders and metabolic syndrome. However, the effects of altered photoperiods on the circadian clock and lipid metabolism are not well understood. To explore the effects of altered photoperiods, we developed a rat model where rats were exposed to either short-day or long-day conditions. Our findings demonstrated that altered photoperiods mediated circadian clocks by partly disrupting rhythmicity and shifting phase values of clock genes. We also showed that compared to long-day conditions, rats under short-day conditions exhibited more photoperiodic changes in a variety of physiological outputs related to lipid metabolism, such as significant increases in serum triglyceride (TG), high-density lipoprotein, and leptin levels, as well as increased body weight, fat:weight ratio, and hepatic TG levels. These increments were gained possibly through upregulated expression of forkhead box O1 (FoxO1), which partly mediates the expression of peroxisome proliferator-activated receptorα (PPARα) to increase the expression of phosphoenolpyruvate carboxykinase (PEPCK), peroxisome proliferator-activated receptor-g coactivator-1β (PGC1β), and fatty acid synthase (Fasn). In addition, the oscillation rhythms of FoxO1, PEPCK, PGC1β, and Fasn expression levels in the livers of rats exposed to a short-day photoperiod were more robust than those exposed to a long-day photoperiod. These findings suggest that a change in photoperiod can partly disrupt the circadian rhythmcity of clock genes, impair lipid metabolism, and promote obesity.  相似文献   

14.
15.
Increased plasma free fatty acids (FFAs) and liver triglyceride (TG) accumulations have been implicated in the pathogenesis of hepatic steatosis. On the other hand, trace elements function as essential cofactors that are involved in various biochemical processes in mammals, including metabolic homeostasis. Notably, clinical and animal studies suggest that the plasma levels of bromide negatively correlate with those of TG, total cholesterol (TC) and high‐density lipoprotein‐cholesterol (HDL‐C). However, the effect of bromide on lipid accumulation and the direct molecular target responsible for its action remains unknown. Oil red O (ORO) and Nile red staining were used to detect the effect of bromide on lipid accumulation in mouse primary hepatocytes (PHs) treated with different doses of sodium bromide (NaBr) in the presence of FFAs (0.4 mM oleate/palmitic acid 1:1). Spectrophotometric and fluorometric analyses were performed to assess cellular TG concentrations and rates of fatty acid oxidation (FAO), respectively, in mouse PHs. We found that bromide decreased FFA‐induced lipid accumulation and increased FFA‐inhibited oxygen consumptions in mouse PHs in a dose‐dependent manner via activation of PPARα. Mechanical studies demonstrated that bromide decreased the phosphorylation levels of JNK. More importantly, the PPARα‐specific inhibitor GW6471 partially abolished the beneficial effects of bromide on mouse PHs. Bromide alleviates FFA‐induced excessive lipid storage and increases rates of FAO through the activation of PPARα/JNK signals in mouse PHs. Therefore, bromide may serve as a novel drug in the treatment of hepatic steatosis.  相似文献   

16.
17.
Difructose anhydride III (DFAIII) is a prebiotic involved in the reduction of secondary bile acids (BAs). We investigated whether DFAIII modulates BA metabolism, including enterohepatic circulation, in the rats fed with a diet supplemented with cholic acid (CA), one of the 12α-hydroxylated BAs. After acclimation, the rats were fed with a control diet or a diet supplemented with DFAIII. After 2 weeks, each group was further divided into two groups and was fed diet with or without CA supplementation at 0.5 g/kg diet. BA levels were analyzed in aortic and portal plasma, liver, intestinal content, and feces. As a result, DFAIII ingestion reduced the fecal deoxycholic acid level via the partial suppression of deconjugation and 7α-dehydroxylation of BAs following CA supplementation. These results suggest that DFAIII suppresses production of deoxycholic acid in conditions of high concentrations of 12α-hydroxylated BAs in enterohepatic circulation, such as obesity or excess energy intake.

Abbreviation: BA: bile acid; BSH: bile salt hydrolase; CA: cholic acid; DCA: deoxycholic acid; DFAIII: difructose anhydride III; MCA: muricholic acid; MS: mass spectrometry; NCDs: non-communicable diseases; LC: liquid chromatography; SCFA: short-chain fatty acid; TCA: taurocholic acid; TCDCA: taurochenodeoxycholic acid; TDCA: taurodeoxycholic acid; TUDCA: tauroursodeoxychlic acid; TαMCA: tauro-α-muricholic acid; TβMCA: tauro-β-muricholic acid; TωMCA: tauro-ω-muricholic acid  相似文献   


18.
Niemann-Pick C1-like 1 protein (NPC1L1), a transporter crucial in intestinal cholesterol absorption, is expressed in human liver but not in murine liver. To elucidate the role of hepatic NPC1L1 on lipid metabolism, we overexpressed NPC1L1 in murine liver utilizing adenovirus-mediated gene transfer. C57BL/6 mice, fed on normal chow with or without ezetimibe, were injected with NPC1L1 adenovirus (L1-mice) or control virus (Null-mice), and lipid analyses were performed five days after the injection. The plasma cholesterol levels increased in L1-mice, and FPLC analyses revealed increased cholesterol contents in large HDL lipoprotein fractions. These fractions, which showed α-mobility on agarose electrophoresis, were rich in apoE and free cholesterol. These lipoprotein changes were partially inhibited by ezetimibe treatment and were not observed in apoE-deficient mice. In addition, plasma and VLDL triglyceride (TG) levels decreased in L1-mice. The expression of microsomal triglyceride transfer protein (MTP) was markedly decreased in L1-mice, accompanied by the reduced protein levels of forkhead box protein O1 (FoxO1). These changes were not observed in mice with increased hepatic de novo cholesterol synthesis. These data demonstrate that cholesterol absorbed through NPC1L1 plays a distinct role in cellular and plasma lipid metabolism, such as the appearance of apoE-rich lipoproteins and the diminished VLDL-TG secretion.  相似文献   

19.
20.
High sucrose (HS) feeding in rats induces hepatic steatosis and plasma dyslipidemia. In previous reports (Huang W, Dedousis N, Bhatt BA, O'Doherty RM. J Biol Chem 279: 21695-21700, 2004; and Huang W, Dedousis N, Bandi A, Lopaschuk GD, O'Doherty RM. Endocrinology 147: 1480-1487, 2006), our laboratory demonstrated a rapid ( approximately 100 min) leptin-induced decrease in liver and plasma VLDL triglycerides (TG) in lean rats, effects that were abolished in obese rats fed a high-fat diet, a model that also presents with hepatic steatosis and plasma dyslipidemia. To further examine the capacity of acute leptin treatment to improve metabolic abnormalities induced by nutrient excess, hepatic leptin action was studied in rats after 5 wk of HS feeding. HS feeding induced hepatic steatosis (TG+80+/-8%; P=0.001), plasma hyperlipidemia (VLDL-TG+102+/-14%; P=0.001), hyperinsulinemia (plasma insulin +67+/-12%; P=0.04), and insulin resistance as measured by homeostasis model assessment (+125+/-20%; P=0.02), without increases in adiposity or plasma leptin concentration compared with standard chow-fed controls. A 120-min infusion of leptin (plasma leptin 13.6+/-0.7 ng/ml) corrected hepatic steatosis (liver TG-29+/-3%; P=0.003) and plasma hyperlipidemia in HS (VLDL-TG-42+/-4%; P=0.001) and increased plasma ketones (+45+/-3%; P=0.006), without altering plasma glucose, insulin, or homeostasis model assessment compared with saline-infused HS controls. In addition, leptin activated liver phosphatidylinositol 3-kinase (+70+/-18%; P=0.01) and protein kinase B (Akt; +90+/-29%; P=0.02), and inhibited acetyl-CoA carboxylase (40+/-7%; P=0.04) in HS, further demonstrating that hepatic leptin action was intact in these animals. We conclude that 1) leptin action on hepatic lipid metabolism remains intact in HS-fed rats, 2) leptin rapidly reverses hepatic steatosis and plasma dyslipidemia induced by sucrose, and 3) the preservation of hepatic leptin action after a HS diet is associated with the maintenance of low adiposity and plasma leptin concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号