首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
6-{4-[3-(R)-2-Methylpyrrolidin-1-yl)propoxy]-phenyl}-2H-pyridazin-3-one 6 (Irdabisant; CEP-26401) was recently reported as a potent H(3)R antagonist with excellent drug-like properties and in vivo activity that advanced into clinical evaluation. A series of pyridone analogs of 6 was synthesized and evaluated as H(3)R antagonists. Structure-activity relationships revealed that the 5-pyridone regiomer was optimal for H(3)R affinity. N-Methyl 9b showed excellent H(3)R affinity, acceptable pharmacokinetics and pharmaceutical properties. In vivo evaluation of 9b showed potent activity in the rat dipsogenia model and robust wake-promoting activity in the rat EEG model.  相似文献   

2.
Structure-activity relationships for a series of phenoxypiperidine pyridazin-3-one H(3)R antagonists/inverse agonists are disclosed. The search for compounds with improved hERG and DAT selectivity without the formation of in vivo active metabolites identified 6-[4-(1-cyclobutyl-piperidin-4-yloxy)-phenyl]-4,4-dimethyl-4,5-dihydro-2H-pyridazin-3-one 17b. Compound 17b met discovery flow criteria, demonstrated potent H(3)R functional antagonism in vivo in the rat dipsogenia model and potent wake activity in the rat EEG/EMG model at doses as low as 0.1 mg/kg ip.  相似文献   

3.
H(3)R structure-activity relationships for a new class of 4,5-dihydropyridazin-3-one H(3)R antagonists/inverse agonists are disclosed. Modification of the 4,5-dihydropyridazinone moiety to block in vivo metabolism identified 4,4-dimethyl-6-{4-[3-((R)-2-methyl-pyrrolidin-1-yl)-propoxy]-phenyl}-4,5-dihydro-2H-pyridazin-3-one 22 as a lead candidate demonstrating potent in vivo functional H(3)R antagonism in the rat dipsogenia model and robust wake promoting activity in the rat EEG/EMG model.  相似文献   

4.
A novel series of 4-pyridazin-3-one and 5-pyridazin-3-one analogues were designed and synthesized as H(3)R antagonists. Structure-activity relationship revealed the 5-pyridazin-3-ones 8a and S-methyl 8b had excellent human and rat H(3)R affinities, and acceptable pharmacokinetic properties. In vivo evaluation of 8a showed potent activity in the rat dipsogenia model and robust wake-promoting activity in the rat EEG/EMG model.  相似文献   

5.
4-(1,1-Dioxo-1,4-dihydro-1lambda(6)-benzo[1,4]thiazin-3-yl)-5-hydroxy-2H-pyridazin-3-one analogs were discovered as a novel class of inhibitors of HCV NS5B polymerase. Structure-based design led to the identification of compound 3a that displayed potent inhibitory activities in biochemical and replicon assays (1b IC(50)<10 nM; 1b EC(50)=1.1 nM) as well as good stability toward human liver microsomes (HLM t(1/2)>60 min).  相似文献   

6.
A series of fused cyclopropyl-4,5-dihydropyridazin-3-one (3,4-diaza-bicyclo[4.1.0]hept-4-en-2-one) phenoxypiperidine analogs was designed and synthesized, leading to the identification of (1R,6S)-5-[4-(1-cyclobutyl-piperidin-4-yloxy)-phenyl]-3,4-diaza-bicyclo[4.1.0]hept-4-en-2-one (R,S-4a) as a second-generation pyridazin-3-one H3R antagonist. Compound R,S-4a was a potent H3R functional antagonist in vivo in the rat dipsogenia model, demonstrated potent wake activity in the rat EEG/EMG model, and enhanced short-term memory in the rat social recognition memory model at doses as low as 0.03–0.3 mg/kg po.  相似文献   

7.
(2R,5S)-5-Amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]- 1,2,4-triazine-3(2H)-one (8) and (2R,5R)-5-amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,2,4-tr iazine-3(2H)-one (9) have been synthesized via a multi-step procedure from 6-azauridine. (2R,5S)-4-Amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,3, 5-triazine-2(1H)-one (11) and (2R,5R)-4-amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]- 1,3,5-triazine-2(1H)-one (12), and the fluorosubstituted 3-deazanucleosides (19-24) have been synthesized by the transglycosylation of (2R,5S)-1-[2-[[(tert-butyldiphenylsilyl) oxy]methyl]-1,3-oxathiolan-5-yl] cytosine (2) with silylated 5-azacytosine and the corresponding silylated fluorosubstituted 3-deazacytosines, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by deprotection of the blocking groups. These compounds were tested in vitro for cytotoxicity against L1210, B16F10, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1 and HBV.  相似文献   

8.
A series of novel pyrimido and other fused quinoline derivatives like 4-methyl pyrimido [5,4-c]quinoline-2,5(1H,6H)-dione (4a), 4-methyl-2-thioxo-1,2-dihydropyrimido [5,4-c]quinoline-5(6H)-one (4b), 2-amino-4-methyl-1,2-dihydropyrimido [5,4-c]quinolin-5(6H)-one (4c), 3-methylisoxazolo [4,5-c]quinolin-4(5H)-one (4d), 3-methyl-1H-pyrazolo [4,3-c]quinoline-4(5H)-one (5e), 5-methyl-1H-[1,2,4] triazepino [6,5-c]quinoline-2,6(3H,7H)-dione (5f), 5-methyl-2-thioxo-2,3-dihydro-1H-[1,2,4]triazepino [6,5-c]quinolin-6(7H)-one (5 g) were synthesized regioselectively from 4-hydroxy-3-acyl quinolin-2-one 3. They were screened for their in vitro antioxidant activities against radical scavenging capacity using DPPH(), Trolox equivalent antioxidant capacity (TEAC), total antioxidant activity by FRAP, superoxide radical (O(2)(°-)) scavenging activity, metal chelating activity and nitric oxide scavenging activity. Among the compounds screened, 4c and 5 g exhibited significant antioxidant activities.  相似文献   

9.
(-)-6-(7-Methoxy-2-trifluoromethylpyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone (KCA-1490) is a dual PDE3/4 inhibitor that exhibits potent combined bronchodilatory and anti-inflammatory activity. Here we show that a 4,4-dimethylpyrazolone subunit serves as an effective surrogate for the 5-methyl-4,5-dihydropyridazin-3(2H)-one ring of KCA-1490 whilst lacking a stereogenic centre. The 2- and 7-substituents in the pyrazolo[1,5-a]pyridine subunit markedly influence the PDE-inhibitory profile and can be adjusted to afford either potent PDE4-selective inhibitors or dual PDE3/4 inhibitors. A survey of bicyclic heteroaromatic replacements for the pyrazolo[1,5-a]pyridine allowed further refinement of the inhibitory profile and identified 3-(8-methoxy-2-(trifluoromethyl)imidazo[1,2-a]pyridin-5-yl)-4,4-dimethyl-1H-pyrazol-5(4H)-one as an orally active, achiral KCA-1490 analog with well-balanced dual PDE3/4-inhibitory activity.  相似文献   

10.
Azuma T  Tanaka Y  Kikuzaki H 《Phytochemistry》2008,69(15):2743-2748
Three phenolic glycosides were isolated together with two known flavonol glycosides from the H2O-soluble fraction of rhizomes of Kaempferia parviflora. Their structures were determined to be rel-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranoside] (1), its rel-5aS,10bR isomer (2), and (2R,3S,4S)-3-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranosyl]-3'-O-methyl-ent-epicatechin-(2alpha-->O-->3,4alpha-->4)-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside] (3). The structures were elucidated on the basis of analyses of chemical and spectroscopic evidence.  相似文献   

11.
A series of 5-, 6-, 7- and 8-aza analogues of 3-aryl-4-hydroxyquinolin-2(1H)-one was synthesized and assayed as NMDA/glycine receptor antagonists. The in vitro potency of these antagonists was determined by displacement of the glycine site radioligand [(3)H]5,7-dicholorokynurenic acid ([(3)H]DCKA) in rat brain cortical membranes. Selected compounds were also tested for functional antagonism using electrophysiological assays in Xenopus oocytes expressing cloned NMDA receptor (NR) 1A/2C subunits. Among the 5-, 6-, 7-, and 8-aza-3-aryl-4-hydroxyquinoline-2(1H)-ones investigated, 5-aza-7-chloro-4-hydroxy-3-(3-phenoxyphenyl)quinolin-2-(1H)-one (13i) is the most potent antagonist, having an IC(50) value of 110 nM in [(3)H]DCKA binding and a K(b) of 11 nM in the electrophysiology assay. Compound 13i is also an active anticonvulsant when administered systemically in the mouse maximum electroshock-induced seizure test (ED(50)=2.3mg/kg, IP).  相似文献   

12.
A facile synthesis of 7-amino-5-chloro-3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine (5-chloroformycin A, 6), 7-amino-5-chloro-3-(2-deoxy-beta-D-erythro-pentofuranosyl) pyrazolo [4,3-d]-pyrimidine (5-chloro-2'-deoxyformycin A, 13) and certain related 5,7-disubstituted pyrazolo[4,3-d]pyrimidine ribonucleosides is described starting with formycin A. Thiation of tri-O-acetyloxoformycin B (4b) with phosphorus pentasulfide, followed 3-beta-D-ribofuranosyl-7-thioxopyrazolo[4,3-d] pyrimidin-5(1H,4H,6H)-one (3b) in excellent yield. Chlorination of 4b with either phosphorus oxychloride or phenyl phosphonicdichloride furnished the key intermediate 5,7-dichloro-3-(2,3, 5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo[4,3-d]pyrimidine (5a), which on deacetylation afforded 5,7-dichloro-3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine (5b). Ammonolysis of 5a with liquid ammonia gave 6, whereas with MeOH/NH3, a mixture of 6 and 7-methoxy-5-chloro-3-beta-D-ribofuranosylpyrazolo[4,3-d]pyrimidine (7) was obtained. Reaction of 6 with lithium azide and subsequent hydrogenation afforded 5-aminoformycin A (10). Treatment of 5a with thiourea gave 5-chloro-3-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl) pyrazolo[4,3-d]pyrimidine-7(1H,6H)-thione (8a), which on further reaction with sodium hydrosulfide furnished 3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine-5,7(1H,4H,6H)-dithione (11). The four-step deoxygenation procedure using phenoxythiocarbonylation of the 2'-hydroxy group of the 3', 5'-protected 6 gave 5-chloro-2'-deoxyformycin A (13).  相似文献   

13.
The synthesis of 4-(1',1'-dioxo-1',4'-dihydro-1'lambda(6)-benzo[1',2',4']thiadiazin-3'-yl)-5-hydroxy-2H-pyridazin-3-ones bearing 6-amino substituents as potent inhibitors of the HCV RNA-dependent RNA polymerase (NS5B) is described. Several of these agents also display potent antiviral activity in cell culture experiments (EC(50)<0.10 microM). In vitro DMPK data (microsome t(1/2), Caco-2 P(app)) for many of the compounds are also disclosed, and a crystal structure of a representative inhibitor complexed with the NS5B protein is discussed.  相似文献   

14.
Methyltrienolone (R 1881 - 17beta-hydroxy-17alpha-methyl-estra-4, 9, 11-trien-3-one) binding to rat ventral prostate cytosol has a specificity typical of an androgen receptor. In human benign prostatic hypertrophy (BPH) tissue, the specificity of [3H] R 1881 binding is different from that measured in rat prostate: progesterone and R 5020 (17, 21-dimethyl-19-nor-4, 9-pregnadiene-3, 20-dione) being more potent while 19-nortestosterone is less potent competitor. Moreover, the synthetic progestin [3H] R 5020 binds to BPH tissue with a similar specificity. These data suggest the presence of progestin binding components or of an atypical androgen receptor in human BPH cytosol.  相似文献   

15.
Three pyrones and a 2(5H)-furanone, designated pectinolides D-G, have been isolated from the dichloromethane extract of Hyptis pectinata. The metabolites were characterized on the basis of 1D and 2D NMR spectroscopic techniques. The pyrones were identified as 6S-[3S,6S-(diacetoxy)-5R-hydroxy-1Z-heptenyl]-5S-hydroxy-5,6-dihydro-2H-pyran-2-one (1)- pectinolide D, 6S-[3S,5R,6S-(triacetoxy)-1Z-heptenyl]-5S-acetoxy-5,6-dihydro-2H-pyran-2-one (2)- pectinolide E and 6S-[3S,5R,6S-(triacetoxy)-1Z-heptenyl]-5S-acetoxy-4R-methoxy-3,4,5,6-tetrahydro-4H pyran-2-one (3)- pectinolide F. The furanone was identified as [2'Z,5(1')Z] 5-(4'S,6'R,7'S-triacetoxy-2-octenylidene)-2(5H)-furanone (4)-pectinolide G.  相似文献   

16.
The synthesis of 5-hydroxy-2-(beta-D-ribofuranosyl)pyran-4-one (9) is described. Treatment of pyranulose glycoside with bromine in carbon tetrachloride afforded brompyranulose glycoside in 90% yield. The reaction of (6S)- and (6R)-4-bromo-6-hydroxy-6-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)-6H- pyran-3-one (2) in acidic media was examined with the following results: the reaction of 2 with trifluoroacetic acid (TFA) in dioxane afforded a mixture of 5-hydroxy-2-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)pyran-4-one (3) and its furan derivative 5-hydroxy-2-{5-(benzoyloxy)methyl]furan-2-yl}pyran-4-one (4), but the use of hydrochloric acid formed the bromofurfural, 3-bromo-5-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)-2-furancarboxyal dehyde only. Acetylation of a mixture (3 and 4) with acetic anhydride facilitated product separation to give the corresponding acetates 5-acetoxy-2-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)pyran-4-one (5) and 5-acetoxy-2-{5-[(benzoyloxy)methyl]furan-2-yl}pyran-4-one (6). Treatment of 5 with hydrazine afforded 3-hydroxymethyl-6-(beta-D-ribofuranosyl)-1H-pyridazin-4-one in 43% yield. Debenzoylation of 5 with aq ammonia gave 9 in 50% yield.  相似文献   

17.
Structure-activity relationships of 2-phenyl-imidazo[2,1-i]purin-5-ones as ligands for human A(3) adenosine receptors (ARs) were investigated. An ethyl group in the 8-position of the imidazoline ring of 4-methyl-2-phenyl-imidazopurinone leading to chiral compounds was found to increase affinity for human A(3) ARs by several thousand-fold. Propyl substitution instead of methyl at N4 decreased A(3) affinity but increased A(1) affinity leading to potent A(1)-selective AR antagonists. The most potent A(1) antagonist of the present series was (S)-8-ethyl-2-phenyl-4-propyl-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one (S-3) exhibiting a K(i) value of 7.4 nM at rat A(1) ARs and greater than 100-fold selectivity versus rat A(2A) and human A(3) ARs. At human A(1) ARs 2-phenylimidazo[2,1-i]purin-5-ones were generally less potent and therefore less A(1)-selective (S-3: K(i)=98 nM). 2-, 3-, or 4-Mono-chlorination of the 2-phenyl ring reduced A(3) affinity but led to an increase in affinity for A(1) ARs, whereas di- (3,4-dichloro) or polychlorination (2,3,5-trichloro) increased A(3) affinity. The most potent and selective A(3) antagonist of the present series was the trichlorophenyl derivative (R)-8-ethyl-4-methyl-2-(2,3,5-trichlorophenyl)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one (R-8) exhibiting a subnanomolar K(i) value at human A(3) ARs and greater than 800-fold selectivity versus the other AR subtypes. Methylation of 4-alkyl-2-phenyl-substituted imidazo[2,1-i]purin-5-ones led exclusively to the N9-methyl derivatives, which exhibited largely reduced AR affinities as compared to the unmethylated compounds. [35S]GTP gamma S binding studies of the most potent 2-phenyl-imidazo[2,1-i]purin-5-ones at membranes of Chinese hamster ovary cells expressing the human A(3) AR revealed that the compounds were inverse agonists at A(3) receptors under standard test conditions. Due to their high A(3) affinity, selectivity, and relatively high water-solubility, 2-phenyl-imidazo[2,1-i]purin-5-ones may become useful research tools.  相似文献   

18.
19.
A facile synthesis of 7-beta-D-ribofuranosyl-3-deazaguanine (1) and certain 8-substituted derivatives of 1 via the sodium salt glycosylation method has been developed. Glycosylation of the sodium salt of methyl 2-chloro(or methylthio)-4(5)-cyanomethylimidazole-5(4)-carboxylate (5 and 13b) with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide (6) gave exclusively methyl 2-chloro(or methylthio)-4-cyanomethyl-1-(2,3, 5-tri-O-benzoyl-beta-D-ribofuranosyl)imidazole-5-carboxylate (7 and 14a), respectively. Ammonolysis of 7 and 14a provided 6-amino-2-chloro(or methylthio)-3-beta-D-ribofuranosylimidazo-[4,5-c]pyridin-4(5H)-one (11 and 17), which on subsequent dehalogenation (or dethiation) gave 1. Similarly, reaction of the sodium salt of 5 and 13b with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-alpha-D-erythro-pentofuranose (8), and ammonolysis of the glycosylated imidazole precursors (9 and 16) gave 6-amino-2-chloro(or methylthio)-3-(2-deoxy-beta-D-erythro-pentofuranosyl) imidazo[4,5-c]-pyridin-4(5H)-one (10a and 15), respectively. Dehalogenation of 10a or dethiation of 15 gave 2'-deoxy-7-beta-D-ribofuranosyl-3-deazaguanine (10b). This procedure provided a direct method of obtaining 10b without the contaminating 9-glycosyl isomer 4.  相似文献   

20.
A series of lipophilic diaromatic derivatives of the glia-selective GABA uptake inhibitor (R)-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol [(R)-exo-THPO, 4] were synthesized via reductive amination of 3-ethoxy-4,5,6,7-tetrahydrobenzo[d]isoxazol-4-one (9) or via N-alkylation of O-alkylatedracemic 4. The effects of the target compounds on GABA uptake mechanisms in vitro were measured using a rat brain synaptosomal preparation or primary cultures of mouse cortical neurons and glia cells (astrocytes), as well as HEK cells transfected with cloned mouse GABA transporter subtypes (GAT1-4). The activity against isoniazid-induced convulsions in mice after subcutaneous administration of the compounds was determined. All of the compounds were potent inhibitors of synaptosomal uptake the most potent compound being (RS)-4-[N-(1,1-diphenylbut-1-en-4-yl)amino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (17a, IC50 = 0.14 microM). The majority of the compounds showed a weak preference for glial, as compared to neuronal, GABA uptake. The highest degree of selectivity was 10-fold corresponding to the glia selectivity of (R)-N-methyl-exo-THPO (5). All derivatives showed a preference for the GAT1 transporter, as compared with GAT2-4, with the exception of (RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (28d), which quite surprisingly turned out to be more potent than GABA at both GAT1 and GAT2 subtypes. The GAT1 activity was shown to reside in (R)-28d whereas (R)-28d and (S)-28d contributed equally to GAT2 activity. This makes (S)-28d a GAT2 selective compound, and (R)-28d equally effective in inhibition of GAT1 and GAT2 mediated GABA transport. All compounds tested were effective as anticonvulsant reflecting that these compounds have blood-brain barrier permeating ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号