首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular damage that spermatozoa encounter at rapid rates of cooling has often been attributed to the formation of intracellular ice. However, no direct evidence of intracellular ice has been presented. An alternative mechanism has been proposed by Morris (2006) that cell damage is a result of an osmotic imbalance encountered during thawing. This paper examines whether intracellular ice forms during rapid cooling or if an alternative mechanism is present. Horse spermatozoa were cooled at a range of cooling rates from 0.3 to 3,000 degrees C/min in the presence of a cryoprotectant. The ultrastructure of the samples was examined by Cryo Scanning Electron Microscopy (CryoSEM) and freeze substitution, to determine whether intracellular ice formed and to examine alternative mechanisms of cell injury during rapid cooling. No intracellular ice formation was detected at any cooling rate. Differential scanning Calorimetry (DSC) was employed to examine the amount of ice formed at different rate of cooling. It is concluded that cell damage to horse spermatozoa, at cooling rates of up to 3,000 degrees C/min, is not caused by intracellular ice formation. Spermatozoa that have been cooled at high rates are subjected to an osmotic shock when they are thawed.  相似文献   

2.
Mechanism of cryoprotection by extracellular polymeric solutes.   总被引:1,自引:1,他引:0       下载免费PDF全文
To elucidate the means by which polymer solutions protect cells from freezing injury, we cooled human monocytes to -80 degrees C or below in the presence of various polymers. Differential scanning calorimetric studies showed that those polymers which protect cells best have a limiting glass transition temperature (T'g) of approximately -20 degrees C; those with a T'g significantly higher or lower did not protect. Freeze-etch electron micrographs indicated that intracellular ice crystals had formed during this freezing procedure, but remained smaller than approximately 300 nm in the same proportion of cells as survived rapid thawing. We propose that cryoprotection of slowly frozen monocytes by polymers is a consequence of a T'g of -20 degrees C in the extracellular solution. In our hypothesis, the initial concentration and viscosity of protective polymer solutions reduce the extent and rate of cell water loss to extracellular ice and limit the injurious osmotic stress, which cells face during freezing at moderate rates to -20 degrees C. Below -20 degrees C, glass formation prevents further osmotic stress by isolating cells from extracellular ice crystals, virtually eliminating cell water loss at lower temperatures. On the other hand, the protective polymer solutions will allow some diffusion of water away from cells at temperatures above T'g. If conditions are correct, cells will concentrate the cytoplasm sufficiently during the initial cooling to T'g to avoid lethal intracellular freezing between T'g and the intracellular Tg, which has been depressed to low temperatures by that concentration. Thus, when polymers are used as cryoprotective agents, cell survival is contingent upon maintenance of osmotic stress within narrow limits.  相似文献   

3.
Characterization of intracellular ice formed during the cooling procedures of cells significantly benefits the development and optimization design of cryopreservation or cryosurgery techniques. In this study, we investigated the influence of the concentration of extracellular non-permeable and permeable solutes on the melting points of the intracellular ice in mouse oocytes using cryomicroscopy. The results showed that the melting points of the intracellular ice are always lower than the extracellular ice. Based on this observation and the Gibbs–Thomson relation, we established a physical model to calculate the size of intracellular ice crystals and described its relationship with the concentrations of intracellular permeating solutes and macromolecules. This model predicts that the increased concentration of macromolecules in cells, by increasing the extracellular non-permeating solute concentration, can significantly lower the required concentration of permeable solutes for intracellular vitrification. The prediction was tested through the cryomicroscopic observation of the co-existence of intracellular vitrification and extracellular crystallization during cooling at 100 °C/min when the extracellular solutions contain 5 molal (m) ethylene glycol and 0.3 to 0.6 m NaCl.  相似文献   

4.
《Cryobiology》2010,60(3):302-307
Characterization of intracellular ice formed during the cooling procedures of cells significantly benefits the development and optimization design of cryopreservation or cryosurgery techniques. In this study, we investigated the influence of the concentration of extracellular non-permeable and permeable solutes on the melting points of the intracellular ice in mouse oocytes using cryomicroscopy. The results showed that the melting points of the intracellular ice are always lower than the extracellular ice. Based on this observation and the Gibbs–Thomson relation, we established a physical model to calculate the size of intracellular ice crystals and described its relationship with the concentrations of intracellular permeating solutes and macromolecules. This model predicts that the increased concentration of macromolecules in cells, by increasing the extracellular non-permeating solute concentration, can significantly lower the required concentration of permeable solutes for intracellular vitrification. The prediction was tested through the cryomicroscopic observation of the co-existence of intracellular vitrification and extracellular crystallization during cooling at 100 °C/min when the extracellular solutions contain 5 molal (m) ethylene glycol and 0.3 to 0.6 m NaCl.  相似文献   

5.
Pegg DE  Wang L  Vaughan D 《Cryobiology》2006,52(3):360-368
Although it is relatively straightforward to cryopreserve living isolated chondrocytes, at the present time there is no satisfactory method to preserve surgical grafts between the time of procurement or manufacture and actual use. In earlier papers we have established that the cryoprotectants dimethyl sulphoxide or propylene glycol do penetrate into this tissue very rapidly. Chondrocytes are not unusually susceptible to osmotic stress; in fact they appear to be particularly resistant. It appears that damage is associated with the formation of ice per se, even at cooling rates that are optimal for the cryopreservation of isolated chondrocytes. We then showed that current methods of cartilage cryopreservation involve the nucleation and growth of ice crystals within the chondrons rather than ice being restricted to the surrounding acellular matrix. This finding established the need to avoid the crystallization of ice—in other words, vitrification. Song and his colleagues have published a vitrification method that is based on the use of one of Fahy’s vitrification formulations. We confirmed the effectiveness of this method but found it to be very dependent on ultra rapid warming. However, we were able to develop a ‘liquidus-tracking’ method that completely avoids the crystallization of ice and does not require rapid warming. The ability of cartilage preserved in this way to incorporate sulphate into newly synthesized glycosaminoglycans (GAGs) approached 70% of that of fresh control cartilage. In this method the rates of cooling and warming can be very low, which is essential for any method that is to be used in Tissue Banks to process the bulky grafts that are required by orthopaedic surgeons. Work is continuing to refine this method for Tissue Bank use.  相似文献   

6.
Although it is relatively straightforward to cryopreserve living isolated chondrocytes, at the present time there is no satisfactory method to preserve surgical grafts between the time of procurement or manufacture and actual use. In earlier papers we have established that the cryoprotectants dimethyl sulphoxide or propylene glycol do penetrate into this tissue very rapidly. Chondrocytes are not unusually susceptible to osmotic stress; in fact they appear to be particularly resistant. It appears that damage is associated with the formation of ice per se, even at cooling rates that are optimal for the cryopreservation of isolated chondrocytes. We then showed that current methods of cartilage cryopreservation involve the nucleation and growth of ice crystals within the chondrons rather than ice being restricted to the surrounding acellular matrix. This finding established the need to avoid the crystallization of ice—in other words, vitrification. Song and his colleagues have published a vitrification method that is based on the use of one of Fahy’s vitrification formulations. We confirmed the effectiveness of this method but found it to be very dependent on ultra rapid warming. However, we were able to develop a ‘liquidus-tracking’ method that completely avoids the crystallization of ice and does not require rapid warming. The ability of cartilage preserved in this way to incorporate sulphate into newly synthesized glycosaminoglycans (GAGs) approached 70% of that of fresh control cartilage. In this method the rates of cooling and warming can be very low, which is essential for any method that is to be used in Tissue Banks to process the bulky grafts that are required by orthopaedic surgeons. Work is continuing to refine this method for Tissue Bank use.  相似文献   

7.
Jiao A  Han X  Critser JK  Ma H 《Cryobiology》2006,52(3):386-392
During freezing, cells are often damaged directly or indirectly by ice formation. Vitrification is an alternative approach to cryopreservation that avoids ice formation. The common method to achieve vitrification is to use relatively high concentrations of cryoprotectant agents (CPA) in combination with a relatively slow cooling rate. However, high concentrations of CPAs have potentially damaging toxic and/or osmotic effects on cells. Therefore, establishing methods to achieve vitrification with lower concentrations of CPAs through ultra-fast cooling rates would be advantageous in these aspects. These ultra-fast cooling rates can be realized by a cooling system with an ultra-high heat transfer coefficient (h) between the sample and coolant. The oscillating motion heat pipe (OHP), a novel cooling device utilizing the pressure change to excite the oscillation motion of the liquid plugs and vapor bubbles, can significantly increase h and may fulfill this aim. The current investigation was designed to numerically study the effects of different values of h on the transient heat transfer characteristics and vitrification tendencies of the cell suspension during the cooling processes in an ultra-thin straw (100 microm in diameter). The transient temperature distribution, the cooling rate and the volume ratio (x) of the ice quantity to the maximum crystallizable ice of the suspension were calculated. From these numerical results, it is concluded that the ultra-high h (>10(4) W/m2 K) obtained by OHPs could facilitate vitrification by efficiently decreasing x as well as the time to pass through the dangerous temperature region where the maximum ice formation happens. For comparison, OHPs can decrease both of the parameters to less than 20% of those from the widely used open pulled straw methods. Therefore, the OHP method will be a promising approach to improving vitrification tendencies of CPA solutions and could also decrease the required concentration of CPAs for vitrification, both of which are of great importance for the successful cryopreservation of cells by vitrification.  相似文献   

8.
Human spermatozoa can be successfully cryopreserved avoiding the use of cryoprotectants through vitrification at very high cooling rates (up to 7.2 x 10(5) degrees C/min). This is achieved by directly plunging a copper cryoloop loaded with a sperm suspension into liquid nitrogen. After storage, vitrified spermatozoa are instantly thawed by melting in an agitated, warm medium. The goal of the present study was to compare the quality of spermatozoa cryopreserved using this rapid vitrification method with that of spermatozoa cooled relatively slowly by preexposure of the loaded cryoloop to liquid nitrogen vapor (-160 degrees C) with speed in the range 150-250 degrees C/min) before immersion into liquid nitrogen. Both cooling modes led to comparable results in terms of the motility, fertilization ability, and DNA integrity of the warmed spermatozoa. In both cases, instant thawing by melting in a warm medium was essential for successful cryopreservation. Our findings suggest that optimal regimes for the cryoprotectant-free cryopreservation of spermatozoa need not be restricted to very fast cooling before storage in liquid nitrogen, a wide range of cooling rates being acceptable. Herein, we discuss the implications of this finding in the light of the physics of extra- and intracellular vitrification.  相似文献   

9.
Starfish oocytes, eggs, and embryos are popular models for studying meiotic maturation, fertilization, and embryonic development. Their large (170- to 200-microm) oocytes are obtainable in copious amounts and are amenable to manipulations that mammalian oocytes are not. The most formidable obstacle to working with marine oocytes is their seasonal availability, yet a successful means of preserving them for use during the nonreproductive season has not been reported. The aim of this study was to investigate the response of starfish oocytes to freezing with rapid and slow cooling rates under a variety of conditions to develop a cryopreservation protocol for these cells. Cryomicroscopic observation revealed that starfish oocytes in isotonic medium undergo intracellular ice formation (IIF) at very high subzero temperatures, such that the mean difference between the temperature of extracellular ice formation (T(EIF)) and IIF (TI(IF)) was less than 3 degrees C and the average T(IIF) was approximately between -4 and -6 degrees C. Neither partial cellular dehydration nor addition of the cryopreservative dimethyl sulfoxide significantly depressed the T(IIF). Under some conditions, we observed ice nucleation at multiple locations within the cytoplasm, suggesting that several factors contribute to the unusually high T(IIF) during controlled-rate freezing and thus vitrification may be a more suitable method for cryopreserving these cells.  相似文献   

10.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at -196 degrees C and -20 degrees C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (-196 degrees C and -80 degrees C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at -20 degrees C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

11.
Wusteman M  Robinson M  Pegg D 《Cryobiology》2004,48(2):179-189
If large pieces of tissue and organs are to be successfully stored at low temperatures, some means must be found to minimize the disruption of extracellular structures by the ice that develops during conventional cryopreservation methods. The use of sufficiently high concentrations of cryoprotectant (CPA) to vitrify rather than freeze the tissue is a possible solution to this problem, and the retention of function of embryos and elastic arteries after vitrification suggests that some cells and tissues at least can withstand exposure to the high concentrations of CPA necessary for this process to occur. There are, however, additional problems in applying vitrifying techniques to bulky tissues and organs. These are related to the additional time required for tissue equilibration of CPA to occur and the consequences for toxic injury, the difficulty in achieving sufficiently rapid and uniform cooling rates to produce the required glassy state, and the even more rapid and uniform warming rates that are necessary to avoid devitrification. Non-uniformity of temperature will increase the risk of mechanical stresses and fractures developing in the glass during rapid warming. This paper reviews possible strategies and the progress that has been made in overcoming these problems. This will include the permeation of CPA mixtures into whole tissues and possibilities for reducing their toxicity by the inclusion of adjuncts such as ice inhibitors and sugars. The warming of tissues by dielectric heating is currently the only practical means by which sufficiently rapid rates can be achieved in bulky tissues given that the tolerable limits of CPA concentration will most likely be insufficient to prevent the development of ice nuclei during cooling. The biological effects of microwaves are reviewed and their effectiveness in producing the required uniformity in warming of tissue models of various shapes are discussed.  相似文献   

12.
Zhang A  Xu LX  Sandison GA  Zhang J 《Cryobiology》2003,47(2):143-154
The morphology of cancerous breast tissue is characterized by tightly packed groups of small malignant cells, as found in most duct cell carcinoma. This special structure affects the osmotic responses of the cells to freezing and hence their probability of damage from cellular dehydration or intracellular ice formation. A mathematical model has been developed to study the microscale damage to these breast cancer cells during cryosurgery by accounting for their special structure. The model is based on a spherical unit comprised of an extracellular region that surrounds several layers of cancer cells, as experimentally observed of breast duct cell carcinoma by other researchers. Temperature transients in the breast cancer undergoing cryosurgery are calculated numerically using the Pennes equation. When subjected to various thermal histories, both cellular dehydration and intracellular ice formation in the unit structure are examined by considering the cell-to-cell contact and water transport at the microscale level. It is found that the cells in the inner layers hardly dehydrated while those in the outermost layer do greatly. The results help interpret the previously observed experimental phenomena that breast cancer tissues exhibit intracellular ice formation even at a slow cooling rate of -3 degrees C/min. In the attempt to better define an optimal procedure for breast cancer cryosurgery, various freezing protocols are simulated. The constant heat flux protocol induces greater cellular dehydration and higher intracellular ice formation probability simultaneously compared to the other protocols studied.  相似文献   

13.
Mazur P  Seki S 《Cryobiology》2011,62(1):1-7
There is great interest in achieving reproducibly high survivals of mammalian oocytes (especially human) after cryopreservation, but the results to date have not matched the interest. A prime cause of cell death is the formation of more than trace amounts of intracellular ice, and one strategy to avoid it is vitrification. In vitrification procedures, cells are loaded with high concentrations of glass-inducing solutes and cooled to −196 °C at rates high enough to presumably induce the glassy state. In the last decade, several devices have been developed to achieve very high cooling rates. Nearly all in the field have assumed that the cooling rate is the critical factor. The purpose of our study was to test that assumption by examining the consequences of cooling mouse oocytes in a vitrification solution at four rates ranging from 95 to 69,250 °C/min to −196 °C and for each cooling rate, subjecting them to five warming rates back above 0 °C at rates ranging from 610 to 118,000 °C/min. In samples warmed at the highest rate (118,000 °C/min), survivals were 70% to 85% regardless of the prior cooling rate. In samples warmed at the lowest rate (610 °C/min), survivals were low regardless of the prior cooling rate, but decreased from 25% to 0% as the cooling rate was increased from 95 to 69,000 °C/min. Intermediate cooling and warming rates gave intermediate survivals. The especially high sensitivity of survival to warming rate suggests that either the crystallization of intracellular glass during warming or the growth by recrystallization of small intracellular ice crystals formed during cooling are responsible for the lethality of slow warming.  相似文献   

14.
Thermal shock and dilution shock as the causes of freezing injury   总被引:7,自引:0,他引:7  
J Farrant  G J Morris 《Cryobiology》1973,10(2):134-140
We suggest that during slow freezing, cellular membranes are altered by the hypertonic solutions produced. This alteration in itself does not cause membrane leakage of normally impermeant solutes but it renders the cells susceptible to solute leakage on the application of a stress, which is provided during freezing by the reduction in temperature (thermal shock) and during thawing by dilution (dilution shock).During slow freezing the effects of cooling rate changes are due to the different times available for the hypertonic solutions to affect the membrane. At a given cooling rate cryoprotective agents reduce the effect on the cells at each temperature during freezing perhaps by reducing the ionic strength. The thermal shock stress during cooling and the dilution shock during thawing thus damages the cells less. With rapid freezing, there is insufficient time for these effects to take place during cooling, which allows the cells to reach low temperatures without thermal shock damage. However, the presence of extracellular ice and the formation of intracellular ice provide hypertonic conditions that render the cells liable to dilution shock on thawing. The slower the rate of thawing of rapidly cooled cells the greater will be the damage from this dilution shock.  相似文献   

15.
Fahy GM  Wowk B  Wu J  Paynter S 《Cryobiology》2004,48(1):22-35
Long-term preservation of complex engineered tissues and organs at cryogenic temperatures in the absence of ice has been prevented to date by the difficulty of discovering combinations of cryoprotectants that are both sufficiently non-toxic and sufficiently stable to allow viability to be maintained and ice formation to be avoided during slow cooling to the glass transition temperature and subsequent slow rewarming. A new theory of the origin of non-specific cryoprotectant toxicity was shown to account, in a rabbit renal cortical slice model, for the toxicities of 20 vitrification solutions and to permit the design of new solutions that are dramatically less toxic than previously known solutions for diverse biological systems. Unfertilized mouse ova vitrified with one of the new solutions were successfully fertilized and regained 80% of the absolute control (untreated) rate of development to blastocysts, whereas ova vitrified in VSDP, the best previous solution, developed to blastocysts at a rate only 30% of that of controls. Whole rabbit kidneys perfused at -3 degrees C with another new solution at a concentration of cryoprotectant (8.4M) that was previously 100% lethal at this temperature exhibited no damage after transplantation and immediate contralateral nephrectomy. It appears that cryoprotectant solutions that are composed to be at the minimum concentrations needed for vitrification at moderate cooling rates are toxic in direct proportion to the average strength of water hydrogen bonding by the polar groups on the permeating cryoprotectants in the solution. Vitrification solutions that are based on minimal perturbation of intracellular water appear to be superior and provide new hope that the successful vitrification of natural organs as well as tissue engineered or clonally produced organ and tissue replacements can be achieved.  相似文献   

16.
Protective effect of intracellular ice during freezing?   总被引:9,自引:0,他引:9  
Acker JP  McGann LE 《Cryobiology》2003,46(2):197-202
Injury results during freezing when cells are exposed to increasing concentrations of solutes or by the formation of intracellular ice. Methods to protect cells from the damaging effects of freezing have focused on the addition of cryoprotective chemicals and the determination of optimal cooling rates. Based on other studies of innocuous intracellular ice formation, this study investigates the potential for this ice to protect cells from injury during subsequent slow cooling. V-79W Chinese hamster fibroblasts and Madin-Darby Canine Kidney (MDCK) cells were cultured as single attached cells or confluent monolayers. The incidence of intracellular ice formation (IIF) in the cultures at the start of cooling was pre-determined using one of two different extracellular ice nucleation temperatures (-5 or -10 degrees C). Samples were then cooled at 1 degrees C/min to the experimental temperature (-5 to -40 degrees C) where samples were warmed rapidly and cell survival assessed using membrane integrity and metabolic activity. For single attached cells, the lower ice nucleation temperature, corresponding to increased incidence of IIF, resulted in decreased post-thaw cell recovery. In contrast, confluent monolayers in which IIF has been shown to be innocuous, show higher survival after cooling to temperatures as low as -40 degrees C, supporting the concept that intracellular ice confers cryoprotection by preventing cell dehydration during subsequent slow cooling.  相似文献   

17.
The aim of the present study was to analyse morphological variations in ovine spermatozoa subjected to different cryopreservation protocols using high resolution imaging techniques. Ejaculates were pooled and diluted in Tris-based extender. Aliquots containing 300 × 106 spz/ml were prepared and evaluated a) after the semen collection and pooling, b) after conventional freezing, c) after vitrification of samples maintained at room temperature (22 °C) prior to vitrification, and d) after vitrification of samples maintained at 5 °C prior to vitrification. Sperm motility, acrosome integrity, DNA fragmentation and morphology were assessed. Subcellular sperm changes were assessed and described by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maintenance of spermatozoa at 5 °C prior to vitrification and the use of 0.4 M sucrose pointed out lower dimensions of area, length and width than fresh, frozen and sperm maintained at 22 °C prior to vitrification. It was observed that the head width and length are significantly higher (P < 0.0001) in fresh spermatozoa than in the vitrified sperm samples. It could be hypothesized that greater intracellular fluid loss during vitrification could prevent damages in the spermatozoon throughout the reduced ice crystals formation, but mainly by the reduction of extracellular ice crystals due to the physical properties modification obtained when high concentrations of sugars are added. This is the first ultramicroscopic study carried out in ovine vitrified spermatozoa, which confirms the functional sperm alterations previously detected.  相似文献   

18.
The rate of ice formation was measured for Hedera helix L. cv. Thorndale (English ivy) bark exposed to -10 C. The cooling rate of bark exposed to -10 C was 31 C per minute. The water efflux rate required for ice formation to occur extracellularly was calculated from the rate of ice formation and the average cell diameter. The water potential difference driving the efflux of water to sites of extracellular ice was calculated from the sample temperature, osmotic water potential, and fraction of water frozen at a given freezing temperature. From the water efflux rate and water potential difference, the resistance of the barrier controlling movement of intracellular water to sites of extracellular ice was calculated. Comparison of the resistance of this barrier to water movement with the resistance of the cell membrane revealed that the membrane represented only 0.5% of the barrier resistance. Thus, membrane resistance can have little influence on the rate of water efflux and ice formation when bark is cooled at a rate of 31 C per minute. If ice formation occurred at the same rate in ivy bark as it occurred in a 10 mm MnCl(2) solution, the membrane resistance would still have represented only 1% of the resistance of the barrier to ice formation. Therefore, at a cooling rate of 31 C/minute, heat removal plays a large part in determining the rate of ice formation. At slower cooling rates experienced under natural freezing conditions the ability to remove heat would play an even larger role. It is concluded that under natural freezing conditions membrane resistance does not limit water efflux.  相似文献   

19.
The changes in morphology of Penicillium expansum Link and Phytophthora nicotianae Van Breda de Haan during freezing and thawing in a growth medium with and without the cryoprotective additive glycerol were examined with a light microscope fitted with a temperature-controlled stage. Viability of 0.5-1.0 mm diameter colonies of both fungi was determined after equivalent rates of cooling to -196 degrees C in the presence or absence of glycerol. In P. expansum shrinkage occurred in all hyphae at rates of cooling of less than 15 degrees C min-1; at faster rates intracellular ice nucleation occurred. The addition of glycerol increased the rate of cooling at which 50% of the hyphae formed intracellular ice from 18 degrees C min-1 to 55 degrees C min-1. This species was particularly resistant to freezing injury and recovery was greater than 60% at all rates of cooling examined. At rapid rates of cooling recovery occurred in hyphae in which intracellular ice had nucleated. In contrast, during the cooling of Ph. nicotianae in the growth medium, shrinkage occurred and no samples survived on thawing from -196 degrees C. However, on the addition of glycerol, shrinkage during freezing decreased and viable hyphae were recovered upon thawing; at rates of cooling over 10 degrees C min-1 the loss of viability was related to glycerol-induced osmotic shrinkage during cooling rather than to the nucleation of intracellular ice.  相似文献   

20.
Successful cryopreservation demands there be little or no intracellular ice. One procedure is classical slow equilibrium freezing, and it has been successful in many cases. However, for some important cell types, including some mammalian oocytes, it has not. For the latter, there are increasing attempts to cryopreserve them by vitrification. However, even if intracellular ice formation (IIF) is prevented during cooling, it can still occur during the warming of a vitrified sample. Here, we examine two aspects of this occurrence in mouse oocytes. One took place in oocytes that were partly dehydrated by an initial hold for 12 min at -25 degrees C. They were then cooled rapidly to -70 degrees C and warmed slowly, or they were warmed rapidly to intermediate temperatures and held. These oocytes underwent no IIF during cooling but blackened from IIF during warming. The blackening rate increased about 5-fold for each five-degree rise in temperature. Upon thawing, they were dead. The second aspect involved oocytes that had been vitrified by cooling to -196 degrees C while suspended in a concentrated solution of cryoprotectants and warmed at rates ranging from 140 degrees C/min to 3300 degrees C/min. Survivals after warming at 140 degrees C/min and 250 degrees C/min were low (<30%). Survivals after warming at > or =2200 degrees C/min were high (80%). When warmed slowly, they were killed, apparently by the recrystallization of previously formed small internal ice crystals. The similarities and differences in the consequences of the two types of freezing are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号