首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple sequence alignment is a fundamental tool in a number of different domains in modern molecular biology, including functional and evolutionary studies of a protein family. Multiple alignments also play an essential role in the new integrated systems for genome annotation and analysis. Thus, the development of new multiple alignment scores and statistics is essential, in the spirit of the work dedicated to the evaluation of pairwise sequence alignments for database searching techniques. We present here norMD, a new objective scoring function for multiple sequence alignments. NorMD combines the advantages of the column-scoring techniques with the sensitivity of methods incorporating residue similarity scores. In addition, norMD incorporates ab initio sequence information, such as the number, length and similarity of the sequences to be aligned. The sensitivity and reliability of the norMD objective function is demonstrated using structural alignments in the SCOP and BAliBASE databases. The norMD scores are then applied to the multiple alignments of the complete sequences (MACS) detected by BlastP with E-value<10, for a set of 734 hypothetical proteins encoded by the Vibrio cholerae genome. Unrelated or badly aligned sequences were automatically removed from the MACS, leaving a high-quality multiple alignment which could be reliably exploited in a subsequent functional and/or structural annotation process. After removal of unreliable sequences, 176 (24 %) of the alignments contained at least one sequence with a functional annotation. 103 of these new matches were supported by significant hits to the Interpro domain and motif database.  相似文献   

2.
MOTIVATION: The best quality multiple sequence alignments are generally considered to derive from structural superposition. However, no previous work has studied the relative performance of profile hidden Markov models (HMMs) derived from such alignments. Therefore several alignment methods have been used to generate multiple sequence alignments from 348 structurally aligned families in the HOMSTRAD database. The performance of profile HMMs derived from the structural and sequence-based alignments has been assessed for homologue detection. RESULTS: The best alignment methods studied here correctly align nearly 80% of residues with respect to structure alignments. Alignment quality and model sensitivity are found to be dependent on average number, length, and identity of sequences in the alignment. The striking conclusion is that, although structural data may improve the quality of multiple sequence alignments, this does not add to the ability of the derived profile HMMs to find sequence homologues. SUPPLEMENTARY INFORMATION: A list of HOMSTRAD families used in this study and the corresponding Pfam families is available at http://www.sanger.ac.uk/Users/sgj/alignments/map.html Contact: sgj@sanger.ac.uk  相似文献   

3.
AltAVisT: comparing alternative multiple sequence alignments   总被引:2,自引:0,他引:2  
We introduce a WWW-based tool that is able to compare two alternative multiple alignments of a given sequence set. Regions where both alignments coincide are color-coded to visualize the local agreement between the two alignments and to identify those regions that can be considered to be reliably aligned. AVAILABILITY: http://bibiserv.techfak.uni-bielefeld.de/altavist/.  相似文献   

4.
ddbRNA: detection of conserved secondary structures in multiple alignments   总被引:4,自引:0,他引:4  
MOTIVATION: Structured non-coding RNAs (ncRNAs) have a very important functional role in the cell. No distinctive general features common to all ncRNA have yet been discovered. This makes it difficult to design computational tools able to detect novel ncRNAs in the genomic sequence. RESULTS: We devised an algorithm able to detect conserved secondary structures in both pairwise and multiple DNA sequence alignments with computational time proportional to the square of the sequence length. We implemented the algorithm for the case of pairwise and three-way alignments and tested it on ncRNAs obtained from public databases. On the test sets, the pairwise algorithm has a specificity greater than 97% with a sensitivity varying from 22.26% for Blast alignments to 56.35% for structural alignments. The three-way algorithm behaves similarly. Our algorithm is able to efficiently detect a conserved secondary structure in multiple alignments.  相似文献   

5.

Background  

While the pairwise alignments produced by sequence similarity searches are a powerful tool for identifying homologous proteins - proteins that share a common ancestor and a similar structure; pairwise sequence alignments often fail to represent accurately the structural alignments inferred from three-dimensional coordinates. Since sequence alignment algorithms produce optimal alignments, the best structural alignments must reflect suboptimal sequence alignment scores. Thus, we have examined a range of suboptimal sequence alignments and a range of scoring parameters to understand better which sequence alignments are likely to be more structurally accurate.  相似文献   

6.
Basic local alignment search tool   总被引:1594,自引:0,他引:1594  
A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.  相似文献   

7.
The availability of complete, annotated genomic sequence information in model organisms is a rich resource that can be extended to understudied orphan crops through comparative genomic approaches. We report here a software tool (cisprimertool) for the identification of conserved intron scanning regions using expressed sequence tag alignments to a completely sequenced model crop genome. The method used is based on earlier studies reporting the assessment of conserved intron scanning primers (called CISP) within relatively conserved exons located near exon-intron boundaries from onion, banana, sorghum and pearl millet alignments with rice. The tool is freely available to academic users at http://www.icrisat.org/gt-bt/CISPTool.htm.  相似文献   

8.

Background

Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate.

Results

We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software.

Conclusions

SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.  相似文献   

9.
Serial BLAST searching   总被引:2,自引:0,他引:2  
MOTIVATION: The translating BLAST algorithms are powerful tools for finding protein-coding genes because they identify amino acid similarities in nucleotide sequences. Unfortunately, these kinds of searches are computationally intensive and often represent bottlenecks in sequence analysis pipelines. Tuning parameters for speed can make the searches much faster, but one risks losing low-scoring alignments. However, high scoring alignments are relatively resistant to such changes in parameters, and this fact makes it possible to use a serial strategy where a fast, insensitive search is used to pre-screen a database for similar sequences, and a slow, sensitive search is used to produce the sequence alignments. RESULTS: Serial BLAST searches improve both the speed and sensitivity.  相似文献   

10.
MOTIVATION: Comparison of multimegabase genomic DNA sequences is a popular technique for finding and annotating conserved genome features. Performing such comparisons entails finding many short local alignments between sequences up to tens of megabases in length. To process such long sequences efficiently, existing algorithms find alignments by expanding around short runs of matching bases with no substitutions or other differences. Unfortunately, exact matches that are short enough to occur often in significant alignments also occur frequently by chance in the background sequence. Thus, these algorithms must trade off between efficiency and sensitivity to features without long exact matches. RESULTS: We introduce a new algorithm, LSH-ALL-PAIRS, to find ungapped local alignments in genomic sequence with up to a specified fraction of substitutions. The length and substitution rate of these alignments can be chosen so that they appear frequently in significant similarities yet still remain rare in the background sequence. The algorithm finds ungapped alignments efficiently using a randomized search technique, locality-sensitive hashing. We have found LSH-ALL-PAIRS to be both efficient and sensitive for finding local similarities with as little as 63% identity in mammalian genomic sequences up to tens of megabases in length  相似文献   

11.
MOTIVATION: Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed and have been shown to improve sensitivity and alignment quality compared with sequence-sequence methods (such as BLAST) and profile-sequence methods (e.g. PSI-BLAST). Here we present a new approach to profile-profile alignment we call Comparison of Alignments by Constructing Hidden Markov Models (HMMs) (COACH). COACH aligns two multiple sequence alignments by constructing a profile HMM from one alignment and aligning the other to that HMM. RESULTS: We compare the alignment accuracy of COACH with two recently published methods: Yona and Levitt's prof_sim and Sadreyev and Grishin's COMPASS. On two sets of reference alignments selected from the FSSP database, we find that COACH is able, on average, to produce alignments giving the best coverage or the fewest errors, depending on the chosen parameter settings. AVAILABILITY: COACH is freely available from www.drive5.com/lobster  相似文献   

12.
MOTIVATION: The recent efforts of various sequence projects to sequence deeply into various phylogenies provide great resources for comparative sequence analysis. A generic and portable tool is essential for scientists to visualize and analyze sequence comparisons. RESULTS: We have developed SynBrowse, a synteny browser for visualizing and analyzing genome alignments both within and between species. It is intended to help scientists study macrosynteny, microsynteny and homologous genes between sequences. It can also aid with the identification of uncharacterized genes, putative regulatory elements and novel structural features of a species. SynBrowse is a GBrowse (the Generic Genome Browser) family software tool that runs on top of the open source BioPerl modules. It consists of two components: a web-based front end and a set of relational database back ends. Each database stores pre-computed alignments from a focus sequence to reference sequences in addition to the genome annotations of the focus sequence. The user interface lets end users select a key comparative alignment type and search for syntenic blocks between two sequences and zoom in to view the relationships among the corresponding genome annotations in detail. SynBrowse is portable with simple installation, flexible configuration, convenient data input and easy integration with other components of a model organism system. AVAILABILITY: The software is available at http://www.gmod.org CONTACT: vbrendel@iastate.edu  相似文献   

13.
Accurate multiple sequence alignments of proteins are very important to several areas of computational biology and provide an understanding of phylogenetic history of domain families, their identification and classification. This article presents a new algorithm, REFINER, that refines a multiple sequence alignment by iterative realignment of its individual sequences with the predetermined conserved core (block) model of a protein family. Realignment of each sequence can correct misalignments between a given sequence and the rest of the profile and at the same time preserves the family's overall block model. Large-scale benchmarking studies showed a noticeable improvement of alignment after refinement. This can be inferred from the increased alignment score and enhanced sensitivity for database searching using the sequence profiles derived from refined alignments compared with the original alignments. A standalone version of the program is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/REFINER) and will be incorporated into the next release of the Cn3D structure/alignment viewer.  相似文献   

14.
SUMMARY: Efficient RNA sequence manipulations (such as multiple alignments) need to be constrained by rules of RNA structure folding. The structural knowledge has increased dramatically in the last years with the accumulation of several large RNA structures similar to those of the bacterial ribosome subunits. However, no tool in the RNA community provides an easy way to link and integrate progress made at the sequence level using the available three-dimensional information. Sequence to Structure (S2S) proposes a framework in which an user can easily display, manipulate and interconnect heterogeneous RNA data, such as multiple sequence alignments, secondary and tertiary structures. S2S has been implemented using the Java language and has been developed and tested under UNIX systems, such as Linux and MacOSX. AVAILABILITY: S2S is available at http://bioinformatics.org/S2S/.  相似文献   

15.
In this paper we demonstrate a practical approach to construct progressive multiple alignments using sequence triplet optimizations rather than a conventional pairwise approach. Using the sequence triplet alignments progressively provides a scope for the synthesis of a three-residue exchange amino acid substitution matrix. We develop such a 20 x 20 x 20 matrix for the first time and demonstrate how its use in optimal sequence triplet alignments increases the sensitivity of building multiple alignments. Various comparisons were made between alignments generated using the progressive triplet methods and the conventional progressive pairwise procedure. The assessment of these data reveal that, in general, the triplet based approaches generate more accurate sequence alignments than the traditional pairwise based procedures, especially between more divergent sets of sequences.  相似文献   

16.
Recent development of strategies using multiple sequence alignments (MSA) or profiles to detect remote homologies between proteins has led to a significant increase in the number of proteins whose structures can be generated by comparative modeling methods. However, prediction of the optimal alignment between these highly divergent homologous proteins remains a difficult issue. We present a tool based on a generalized Viterbi algorithm that generates optimal and sub-optimal alignments between a sequence and a Hidden Markov Model. The tool is implemented as a new function within the HMMER package called hmmkalign.  相似文献   

17.
Although multiple sequence alignments (MSAs) are essential for a wide range of applications from structure modeling to prediction of functional sites, construction of accurate MSAs for distantly related proteins remains a largely unsolved problem. The rapidly increasing database of spatial structures is a valuable source to improve alignment quality. We explore the use of 3D structural information to guide sequence alignments constructed by our MSA program PROMALS. The resulting tool, PROMALS3D, automatically identifies homologs with known 3D structures for the input sequences, derives structural constraints through structure-based alignments and combines them with sequence constraints to construct consistency-based multiple sequence alignments. The output is a consensus alignment that brings together sequence and structural information about input proteins and their homologs. PROMALS3D can also align sequences of multiple input structures, with the output representing a multiple structure-based alignment refined in combination with sequence constraints. The advantage of PROMALS3D is that it gives researchers an easy way to produce high-quality alignments consistent with both sequences and structures of proteins. PROMALS3D outperforms a number of existing methods for constructing multiple sequence or structural alignments using both reference-dependent and reference-independent evaluation methods.  相似文献   

18.
We conducted an unbiased metagenomics survey using plasma from patients with chronic hepatitis B, chronic hepatitis C, autoimmune hepatitis (AIH), non-alcoholic steatohepatitis (NASH), and patients without liver disease (control). RNA and DNA libraries were sequenced from plasma filtrates enriched in viral particles to catalog virus populations. Hepatitis viruses were readily detected at high coverage in patients with chronic viral hepatitis B and C, but only a limited number of sequences resembling other viruses were found. The exception was a library from a patient diagnosed with hepatitis C virus (HCV) infection that contained multiple sequences matching GB virus C (GBV-C). Abundant GBV-C reads were also found in plasma from patients with AIH, whereas Torque teno virus (TTV) was found at high frequency in samples from patients with AIH and NASH. After taxonomic classification of sequences by BLASTn, a substantial fraction in each library, ranging from 35% to 76%, remained unclassified. These unknown sequences were assembled into scaffolds along with virus, phage and endogenous retrovirus sequences and then analyzed by BLASTx against the non-redundant protein database. Nearly the full genome of a heretofore-unknown circovirus was assembled and many scaffolds that encoded proteins with similarity to plant, insect and mammalian viruses. The presence of this novel circovirus was confirmed by PCR. BLASTx also identified many polypeptides resembling nucleo-cytoplasmic large DNA viruses (NCLDV) proteins. We re-evaluated these alignments with a profile hidden Markov method, HHblits, and observed inconsistencies in the target proteins reported by the different algorithms. This suggests that sequence alignments are insufficient to identify NCLDV proteins, especially when these alignments are only to small portions of the target protein. Nevertheless, we have now established a reliable protocol for the identification of viruses in plasma that can also be adapted to other patient samples such as urine, bile, saliva and other body fluids.  相似文献   

19.
Constructing multiple homologous alignments for protein-coding DNA sequences is crucial for a variety of bioinformatic analyses but remains computationally challenging. With the growing amount of sequence data available and the ongoing efforts largely dependent on protein-coding DNA alignments, there is an increasing demand for a tool that can process a large number of homologous groups and generate multiple protein-coding DNA alignments. Here we present a parallel tool - ParaAT that is capable of parallelly constructing multiple protein-coding DNA alignments for a large number of homologs. As testified on empirical datasets, ParaAT is well suited for large-scale data analysis in the high-throughput era, providing good scalability and exhibiting high parallel efficiency for computationally demanding tasks. ParaAT is freely available for academic use only at http://cbb.big.ac.cn/software.  相似文献   

20.
MOTIVATION: Improved comparisons of multiple sequence alignments (profiles) with other profiles can identify subtle relationships between protein families and motifs significantly beyond the resolution of sequence-based comparisons. RESULTS: The local alignment of multiple alignments (LAMA) method was modified to estimate alignment score significance by applying a new measure based on Fisher's combining method. To verify the new procedure, we used known protein structures, sequence annotations and cyclical relations consistency analysis (CYRCA) sets of consistently aligned blocks. Using the new significance measure improved the sensitivity of LAMA without altering its selectivity. The program performed better than other profile-to-profile methods (COMPASS and Prof_sim) and a sequence-to-profile method (PSI-BLAST). The testing was large scale and used several parameters, including pseudo-counts profile calculations and local ungapped blocks or more extended gapped profiles. This comparison provides guidelines to the relative advantages of each method for different cases. We demonstrate and discuss the unique advantages of using block multiple alignments of protein motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号