首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transendothelial lipid transport into and spread in the subendothelial intima of large arteries, and subsequent lipid accumulation, appear to start plaque formation. We experimentally examine transendothelial horseradish peroxidase (HRP) transport in vessels that are usually, e.g., pulmonary artery (PA), or almost always, e.g., inferior vena cava (IVC), atherosclerosis resistant vs. disease prone, e.g., aorta, vessels. In these vessels, HRP traverses the endothelium at isolated, focal spots, rather than uniformly, for short circulation times. For femoral vein HRP introduction, PA spots have 30-s radii [ approximately 53.2 microm (SD 10.4); compare aorta: 54.6 microm (SD 8.75)] and grow quickly from 30 s to 1 min (40%, P<0.05) and more slowly afterward (P>0.05). This trend resembles the aorta, suggesting the PA has a similarly sparse intima. With carotid artery (CA) HRP introduction, the 30-s spot (132.86 +/- 37.32 microm) is far larger than the PAs, grows little ( approximately 28%, P<0.05) from 30 to 60 s, and is much flatter than the artery curves. Transverse electron microscopic sections after approximately 10 min HRP circulation show thin, intense staining immediately beneath both vessels' endothelia with an almost step change to diffuse staining beyond. This indicates the existence of a sparse, subendothelial intima, even when there is no internal elastic lamina (IVC). This motivates a simple model that translates growth rates into lower bounds for the flow through focal leaks. The model results and our earlier wall and medial hydraulic conductivity data explain these spot growth curves and point to differences in transport patterns that might be relevant in understanding the immunity of IVC to disease initiation.  相似文献   

2.
In this study, filtration flows through the walls of the rat aorta, pulmonary artery (PA), and inferior vena cava (IVC), vessels with very different susceptibilities to atherosclerosis, were measured as a function of transmural pressure (DeltaP), with intact and denuded endothelium on the same vessel. Aortic hydraulic conductivity (L(p)) is high at 60 mmHg, drops approximately 40% by 100 mmHg, and is pressure independent to 140 mmHg. The trends are similar in the PA and IVC, dropping 42% from 10 to 40 mmHg and flat to 100 mmHg (PA) and dropping 33% from 10 to 20 mmHg and essentially flat to 60 mmHg (IVC). Removal of the endothelium renders L(p)(DeltaP) flat: it increases L(p) of the aorta by approximately 75%, doubles L(p) of the PA, and quadruples L(p) of the IVC. Specific resistance (1/L(p)) of the aortic endothelium is approximately 47% of total resistance; i.e., the endothelium accounts for approximately 47% of the DeltaP drop at 100 mmHg. The PA value is 55% at >40 mmHg, and the IVC value is 23% at 10 mmHg. L(p) of the intact aorta, PA, and IVC are order 10(-8), 10(-7), and 5 x 10(-7) cm.s(-1).mmHg(-1), and wall thicknesses are 145.8 microm (SD 9.3), 78.9 microm (SD 3.3), and 66.1 microm (SD 4.1), respectively. These data are consistent with the different wall structures of the three vessels. The rat aortic L(p) data are quantitatively consistent with rabbit L(p)(DeltaP) (Tedgui A and Lever MJ. Am J Physiol Heart Circ Physiol 247: H784-H791, 1984; Baldwin AL and Wilson LM. Am J Physiol Heart Circ Physiol 264: H26-H32, 1993), suggesting that intimal compression under pressure loading may also play a role in L(p)(DeltaP) in these other vessels. Despite very different driving DeltaP, nominal transmural water fluxes of these three vessels are very similar and, therefore, cannot alone account for their differences in disease susceptibility. The different fates of macromolecular tracers convected by these water fluxes into the walls of these vessels may account for this difference.  相似文献   

3.
The accumulation of low-density lipoprotein (LDL) is recognized as one of the main contributors in atherogenesis. Mathematical models have been constructed to simulate mass transport in large arteries and the consequent lipid accumulation in the arterial wall. The objective of this study was to investigate the influences of wall shear stress and transmural pressure on LDL accumulation in the arterial wall by a multilayered, coupled lumen-wall model. The model employs the Navier-Stokes equations and Darcy's Law for fluid dynamics, convection-diffusion-reaction equations for mass balance, and Kedem-Katchalsky equations for interfacial coupling. To determine physiologically realistic model parameters, an optimization approach that searches optimal parameters based on experimental data was developed. Two sets of model parameters corresponding to different transmural pressures were found by the optimization approach using experimental data in the literature. Furthermore, a shear-dependent hydraulic conductivity relation reported previously was adopted. The integrated multilayered model was applied to an axisymmetric stenosis simulating an idealized, mildly stenosed coronary artery. The results show that low wall shear stress leads to focal LDL accumulation by weakening the convective clearance effect of transmural flow, whereas high transmural pressure, associated with hypertension, leads to global elevation of LDL concentration in the arterial wall by facilitating the passage of LDL through wall layers.  相似文献   

4.
The relative contents (RCs) of elements in the femoral arteries as well as the thoracic aorta, coronary, basilar, and radial arteries from 26 subjects within the age range between 55 and 92 yr old, were analyzed by inductively coupled plasma atomic emission spectrometry. The RCs of calcium and phosphorus in the femoral arteries started to increase before the age of 60 yr. The RCs of magnesium increased after the age of 70 yr. However, the RCs of sulfur did not change significantly within the age range between 55 and 92 yr. With regard to localization of the mineral accumulations in the femoral arterial wall, it was found that the accumulations of calcium and phosphorus occurred only in the tunica media, only in the tunica intima, or in both the tunica media and the tunica intima. The manner of accumulation of calcium and phosphorus in the femoral arterial wall was different from that in the aortic wall. The average RCs of calcium in the 26 specimens were the highest in the femoral artery, followed in descending order by the thoracic aorta, coronary, basilar, and radial arteries. The average RCs of phosphorus were highest in the thoracic aorta, followed by the coronary, femoral, basilar, and radial arteries. It is noted that the accumulation of mineral elements never occurred uniformly in all the arteries.  相似文献   

5.
Pulmonary arteries (PA) are resistant to the vasodilator effects of extracellular acidosis in systemic vessels; the mechanism underlying this difference between systemic and pulmonary circulations has not been elucidated. We hypothesized that RhoA/Rho-kinase-mediated Ca2+ sensitization pathway played a greater role in tension development in pulmonary than in systemic vascular smooth muscle and that this pathway was insensitive to acidosis. In arterial rings contracted with the alpha1-agonist phenylephrine (PE), the Rho-kinase inhibitor Y-27632 (< or =3 microM) induced greater relaxation in precontracted PA rings than in aortic rings. In PA rings stimulated by PE, the activation of RhoA was greater than in aorta. Normocapnic acidosis (NA) induced a smaller relaxation in precontracted PA than in aorta. However, in the presence of nifedipine and thapsigargin, when PE-induced contraction was predominantly mediated by Rho-kinase, the relaxant effect of NA was reduced and similar in both vessel types. Furthermore, in the presence of Y-27632, NA induced a greater relaxation in both PA and aorta, which was similar in both vessels. Finally, in alpha-toxin-permeabilized smooth muscle, PE-induced contraction at constant Ca2+ activity was inhibited by Y-27632 and unaffected by acidosis. These results indicate that Ca2+ sensitization induced by the RhoA/Rho-kinase pathway played a greater role in agonist-induced vascular smooth muscle contraction in PA than in aorta and that tension mediated by this pathway was insensitive to acidosis. The predominant role of the RhoA/Rho-kinase pathway in the pulmonary vasculature may account for the resistance of this circulation to the vasodilator effect of acidosis observed in the systemic circulation.  相似文献   

6.
7.
In an attempt to investigate the effects of transmural pressure on LDL transport and distribution across the arterial wall, uptake of labeled LDL has been measured in excised rabbit thoracic aorta, held at in vivo length and pressurized to 70 or 160 mmHg. The transmural distribution of LDL concentration across the wall was determined by examining serial frozen sections cut parallel to the luminal surface at 20 microns intervals from the intima to adventitia. The LDL concentration observed in the first luminal section at 160 mmHg was 20-fold higher than that obtained at 70 mmHg. The LDL concentrations decreased in the subsequent sections of the first half of the media and became similar, in the outer half of the media, to the values observed under normal pressure. These results might provide an account of one of the mechanisms involved in the deleterious effects of hypertension in atherogenesis.  相似文献   

8.
Summary Collagen types I and III were located by immunofluorescence procedures in the aorta and coronary arteries of the rat. Type I collagen was most prevalent in the adventitia of the aorta with only small amounts present in the intima and media. Type III collagen appeared to be a significant component in the media of the aorta and also in the adventitia of both blood vessels. The intima and media of the coronary arteries did not stain strongly for either type I or III collagen. Neither staining procedure was altered with preincubation of the sections with hyaluronidase or chondroitinase ABC. These studies indicate that type III collagen is a major component of the adventitia which has previously not been recognized by immunohistochemical techniques, possibly due to masking of collagen staining with glycosaminoglycans.  相似文献   

9.
Time-of-flight secondary-ion-mass-spectrometry (TOF-SIMS) was utilized to address the issue of localization of lipids and inorganic ions in healthy rat aorta and human atherosclerotic plaque. Pieces of rat aorta were high pressure frozen, freeze-fractured and freeze dried. The samples were analyzed by imaging TOF-SIMS equipped with a Bi(1-7)(+)-source. Reference lipid samples were analyzed and compared to data obtained by analysis of the rat aorta samples. Fatty acids, cholesterol, oxysterol and diacylglycerols were detected and localized. A heterogeneous lipid distribution could be shown in the aorta, where the lamellae of the aorta, distinguished by imaging of CN(-), appeared enriched in cholesterol, oxysterol and diacylglycerols, while the smooth muscle tissue, identified by imaging of PO(3), appeared enriched in phosphocholine. Palmitic/palmitoleic acid and stearic/oleic acid appeared to be heterogeneously distributed over the aorta with high concentration areas located especially in the tunica media region of the aorta. Human atherosclerotic plaque showed an irregular cholesterol distribution mainly located in spots in the intima region with elongated diacylglycerol regions located mainly in the media region.  相似文献   

10.
The present study was designed to evaluate the expression of dopamine D1 and D2 receptor mRNAs in systemic and pulmonary vasculatures. Using specific antisense riboprobes for dopamine D1 and D2 receptor cDNAs, in situ hybridization histochemistry was performed in the aorta, common carotid artery, vertebral artery, pulmonary artery, and superior vena cava of the adult male Sprague Dawley rat. In the case of the aorta, common carotid artery, and vertebral artery, dopamine D1 receptor mRNAs localized mainly in the smooth muscle cells of the tunica media. However, the signals of dopamine D2 receptor mRNAs were found in the endothelium and subendothelial layer of tunica intima, and interstitial cells of tunica adventitia. In the case of the pulmonary artery, signals of dopamine D1 receptor mRNAs were detected within the tunica intima, media, and adventitia. Expression of D2 receptor mRNAs was detected in the walls of small blood vessels within the tunica adventitia of the pulmonary artery. There were no detectable signals of dopamine D1 and D2 receptor mRNAs in the vein. The uneven distribution of dopamine D1 and D2 receptor mRNAs in the rat systemic vasculatures and pulmonary artery suggests that dopamine differentially regulates the vasodilation of the systemic and pulmonary arteries through the differential stimulation of dopamine D1 and D2 receptor.  相似文献   

11.
Despite the crucial role of nitric oxide (NO) in the homeostasis of the vasculature, little quantitative information exists concerning NO transport and distribution in medium and large-sized arteries where atherosclerosis and aneurysm occur and hemodynamics is complex. We hypothesized that local hemodynamics in arteries may govern NO transport and affect the distribution of NO in the arteries, hence playing an important role in the localization of vascular diseases. To substantiate this hypothesis, we presented a lumen/wall model of the human aorta based on its MRI images to simulate the production, transport and consumption of NO in the arterial lumen and within the aortic wall. The results demonstrated that the distribution of NO in the aorta was quite uneven with remarkably reduced NO bioavailability in regions of disturbed flow, and local hemodynamics could affect NO distribution mainly via flow dependent NO production rate of endothelium. In addition, erythrocytes in the blood could moderately modulate NO concentration in the aorta, especially at the endothelial surface. However, the reaction of NO within the wall could only slightly affect NO concentration on the luminal surface, but strongly reduce NO concentration within the aortic wall. A strong positive correlation was revealed between wall shear stress and NO concentration, which was affected by local hemodynamics and NO reaction rate. In conclusion, the distribution of NO in the aorta may be determined by local hemodynamics and modulated differently by NO scavengers in the lumen and within the wall.  相似文献   

12.
The purpose of this study was to determine the extent of aluminum (Al) accumulation in the human aorta and cerebral arteries. The Al contents in the aortae and in the cerebral arteries from 23 human subjects was determined by inductively coupled plasma atomic emission spectrophotometry (ICP-AES). The subjects' age range was 45–99-yr-old; 15 of the subjects were males and 8 were females. Al was detected in twelve aortae and in six cerebral arteries, when the entire specimen was analyzed. Two specimens where Al was found in the cerebral arteries contained no Al in the aorta. No relationship to the subject's sex was found. When related to age, two groups were established. Group L (45–75 yr old) and group H (>75 yr old), which exhibited aortal Al concentrations of 33.3 and 72.7%, respectively. When the aortic wall was dissected into the tunica intima, media, and adventitia, Al was found mainly in the tunica media. In the aorta, significant relationships were found between Al and phosphorus (P) levels (r=0.801,p<0.01) and between Al and calcium (Ca) (r=0.661,p<0.05). We have concluded that Al accumulation is age-dependent and that it occurs both in the aorta and in the cerebral artery. In the aorta, accumulation occurs mainly in the tunica media. Both P and Ca appear to enhance aortal Al accumulation.  相似文献   

13.
14.
The effect of blood velocity pulsations on bioheat transfer is studied. A simple model of a straight rigid blood vessel with unsteady periodic flow is considered. A numerical solution that considers the fully coupled Navier-Stokes and energy equations is used for the simulations. The influence of the pulsation rate on the temperature distribution and energy transport is studied for four typical vessel sizes: aorta, large arteries, terminal arterial branches, and arterioles. The results show that: the pulsating axial velocity produces a pulsating temperature distribution; reversal of flow occurs in the aorta and in large vessels, which produces significant time variation in the temperature profile. Change of the pulsation rate yields a change of the energy transport between the vessel wall and fluid for the large vessels. For the thermally important terminal arteries (0.04-1 mm), velocity pulsations have a small influence on temperature distribution and on the energy transport out of the vessels (8 percent for the Womersley number corresponding to a normal heart rate). Given that there is a small difference between the time-averaged unsteady heat flux due to a pulsating blood velocity and an assumed nonpulsating blood velocity, it is reasonable to assume a nonpulsating blood velocity for the purposes of estimating bioheat transfer.  相似文献   

15.
Hydrogen sulfide (H(2)S) is a recently identified endogenous vasodilator in mammals. In steelhead/rainbow trout (Oncorhynchus mykiss, Osteichthyes), H(2)S produces both dose-dependent dilation and a unique dose-dependent constriction. In this study, we examined H(2)S vasoactivity in all vertebrate classes to determine whether H(2)S is universally vasoactive and to identify phylogenetic and/or environmental trends. H(2)S was generated from NaHS and examined in unstimulated and precontracted systemic and, when applicable, pulmonary arteries (PA) from Pacific hagfish (Eptatretus stouti, Agnatha), sea lamprey (Petromyzon marinus, Agnatha), sandbar shark (Carcharhinus milberti, Chondrichthyes), marine toad (Bufo marinus, Amphibia), American alligator (Alligator mississippiensis, Reptilia), Pekin duck (Anas platyrhynchos domesticus, Aves), and white rat (Rattus rattus, Mammalia). In otherwise unstimulated vessels, NaHS produced 1) a dose-dependent relaxation in Pacific hagfish dorsal aorta; 2) a dose-dependent contraction in sea lamprey dorsal aorta, marine toad aorta, alligator aorta and PA, duck aorta, and rat thoracic aorta; 3) a threshold relaxation in shark ventral aorta, dorsal aorta, and afferent branchial artery; and 4) a multiphasic contraction-relaxation-contraction in the marine toad PA, duck PA, and rat PA. Precontraction of these vessels with another agonist did not affect the general pattern of NaHS vasoactivity with the exception of the rat aorta, where relaxation was now dominant. These results show that H(2)S is a phylogenetically ancient and versatile vasoregulatory molecule that appears to have been opportunistically engaged to suit both organ-specific and species-specific homeostatic requirements.  相似文献   

16.
Elastic behavior of vascular wall, assuming the vessels to be ‘thick-walled’ and utilizing finite deformation theory, was investigated. It was found that canine carotid arterial wall is neither isotropic nor transversely isotropic. Previously, stress-strain relations were obtained for carotid arteries on the basis of membrane theory (Doyle and Dobrin, 1971). Since strain gradients across the wall are fairly steep, the applicability of such expressions, for pointwise evaluation of stress, required examination. The study indicated that these relationships between mean circumferential stress and mean extension ratio in the circumferential direction could be used to relate the specific circumferential stress value to the specific extension ratio at any designated point within the wall. From this analysis it was possible to evaluate circumferential and radial wall stresses. Both of these stresses are maximal at the inner surface of the intima. At this point the radial stress is equal to the transmural pressure and is compressive, while the circumferential stress is tensile and is 1·5 to 2 times the value of the mean stress, i.e. the product of transmural pressure and the ratio of internal radius-to-wall thickness. Both stresses are lowest at the outer edge of the adventitia. These stress distributions were considered with respect to the spacing of the elastic lamellae and the absence of discernible vasa vasora in the inner third of the wall.  相似文献   

17.
Thickening of blood vessel segment intima (aorta, carotid, femoral and renal arteries) excised from 9 patients during surgery for nonspecific aortoarteritis was studied, using electron microscopic autoradiography. A large number of vessels of capillary and precapillary type were found among cells and in the intracellular substance of thickened intima. Vascular endotheliocytes and pericytes were easily labelled with 3H-uridine. It is suggested that cells appear in the thickened intima due to growth of small vessels of the capillary type, covered with pericytes which turn into fibroblast-like cells producing intracellular substance, and not due to smooth muscle cell migration from the media. In addition, it was found that the lumens of some vessels were filled with fibrillar material and that the cells underlying the vessel stayed apart, not forming a continuous circle. It is suggested that the damage of normal vascular structure can also result in the appearance of free cells.  相似文献   

18.
The pattern recognition procedure of discriminant analysis has been used to characterize the trace metal profiles created by the concentrations of 8 trace metals in 15 anatomic sites of beef heart tissue. Metals analyzed were copper, tin, lead, molybdenum, strontium, cesium, barium, and aluminum. Anatomic sites sampled included main pulmonary artery, aorta, mitral and tricuspid valves, left and right coronary arteries, os cordis, right atrium, left atrial appendage, crista supraventricularis, left bundle branch, free wall of the right and left ventricles, interventricular septum, and papillary muscle of the left ventricle. The striking features of the data were: (1) All specimens of the mitral valve, tricuspid valve, and os cordis were ambiguously described by their trace metal profiles; (2) the four blood vessels constituted two groups of two tissues each (aorta, main pulmonary artery; left and right coronary arteries); (3) tissues derived from ordinary and specialized myocardium were quite different from blood vessels, heart valves and os cordis. Using these profiles, 85% of the specimens analyzed were correctly classified by discriminant analysis with respect to their anatomic origin.  相似文献   

19.
Aging leads to central artery stiffening and associated hemodynamic sequelae. Because healthy arteries exhibit differential geometry, composition, and mechanical behaviors along the central vasculature, we sought to determine whether wall structure and mechanical function differ across five vascular regions—the ascending and descending thoracic aorta, suprarenal and infrarenal abdominal aorta, and common carotid artery—in 20 versus 100-week-old male wild-type mice. Notwithstanding generally consistent changes across these regions, including a marked thickening of the arterial wall, diminished in vivo axial stretch, and loss of elastic energy storage capacity, the degree of changes tended to be slightly greater in abdominal than in thoracic or carotid vessels. Likely due to the long half-life of vascular elastin, most mechanical changes in the arterial wall resulted largely from a distributed increase in collagen, including thicker fibers in the media, and localized increases in glycosaminoglycans. Changes within the central arteries associated with significant increases in central pulse pressure and adverse changes in the left ventricle, including increased cardiac mass and decreased diastolic function. Given the similar half-life of vascular elastin in mice and humans but very different life-spans, there are important differences in the aging of central vessels across these species. Nevertheless, the common finding of aberrant matrix remodeling contributing to a compromised mechanical homeostasis suggests that studies of central artery aging in the mouse can provide insight into mechanisms and treatment strategies for the many adverse effects of vascular aging in humans.  相似文献   

20.
The plasminogen activator in 117 specimen of 20 coronary and 29 pulmonary arteries occluded completely by thrombi or emboli within the adventitia and intima was studied using TODD's histochemical method. 39 cadavers were used, 1--18 hours post mortem from subjects aged from 45 to 88 years. In occluded arteries both coronary and pulmonary the plasminogen activator activity was decreased in comparison with normal and atherosclerotic patients. In coronary and pulmonary arterial thrombi a low grade focal activity of plasminogen activator was detected. It is assumed that the decrease of plasminogen activator in the occluded human arterial wall is due to the impaired oxygen supply of the vessel wall and to the consumption of the plasminogen activator for thrombus lysis. These mechanisms are likely to influence the plasminogen activator for a certain and prolonged time, since there were no changes of fibrinolysis within the vessel wall of arteria carotis in rats where an acute thrombosis was elicited by means of an electric current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号