首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FCDI (fast Ca2?-dependent inactivation) is a mechanism that limits Ca2? entry through Ca2? channels, including CRAC (Ca2? release-activated Ca2?) channels. This phenomenon occurs when the Ca2? concentration rises beyond a certain level in the vicinity of the intracellular mouth of the channel pore. In CRAC channels, several regions of the pore-forming protein Orai1, and STIM1 (stromal interaction molecule 1), the sarcoplasmic/endoplasmic reticulum Ca2? sensor that communicates the Ca2? load of the intracellular stores to Orai1, have been shown to regulate fast Ca2?-dependent inactivation. Although significant advances in unravelling the mechanisms of CRAC channel gating have occurred, the mechanisms regulating fast Ca2?-dependent inactivation in this channel are not well understood. We have identified that a pore mutation, E106D Orai1, changes the kinetics and voltage dependence of the ICRAC (CRAC current), and the selectivity of the Ca2?-binding site that regulates fast Ca2?-dependent inactivation, whereas the V102I and E190Q mutants when expressed at appropriate ratios with STIM1 have fast Ca2?-dependent inactivation similar to that of WT (wild-type) Orai1. Unexpectedly, the E106D mutation also changes the pH dependence of ICRAC. Unlike WT ICRAC, E106D-mediated current is not inhibited at low pH, but instead the block of Na? permeation through the E106D Orai1 pore by Ca2? is diminished. These results suggest that Glu1?? inside the CRAC channel pore is involved in co-ordinating the Ca2?-binding site that mediates fast Ca2?-dependent inactivation.  相似文献   

2.
The extracellular Ca(2+)-sensing receptor (CASR) is a promiscuous G-protein-coupled receptor closely related to the taste receptors T1R1-T1R3. Here we analyzed the possibility that apart from being stimulated by external Ca(2+) and amino acids, the substances effective as tastants, CASR might serve as a receptor for other sapid compounds. CASR was heterologously expressed in HEK-293 cells, and their responsivity to a variety of bitter and sweet substances was examined. Among them, solely denatonium was found to stimulate Ca(2+) signaling in CASR-positive HEK-293 cells. Apparently, these Ca(2+) responses were specific, as those were inhibited by the CASR antagonist NSP-4123. Altogether, our findings indicate that denatonium stimulates CASR by shifting a dose-response curve for the principal CASR agonist Ca(2+) to lower concentrations.  相似文献   

3.
Musgaard M  Thøgersen L  Schiøtt B 《Biochemistry》2011,50(51):11109-11120
The P-type ATPases are responsible for the transport of cations across cell membranes. The sarco(endo)plasmic reticulum Ca2?-ATPase (SERCA) transports two Ca2? ions from the cytoplasm to the lumen of the sarco(endo)plasmic reticulum and countertransports two or three protons per catalytic cycle. Two binding sites for Ca2? ions have been located via protein crystallography, including four acidic amino acid residues that are essential to the ion coordination. In this study, we present molecular dynamics (MD) simulations examining the protonation states of these amino acid residues in a Ca2?-free conformation of SERCA. Such knowledge will be important for an improved understanding of atomistic details of the transport mechanism of protons and Ca2? ions. Eight combinations of the protonation of four central acidic residues, Glu309, Glu771, Asp800, and Glu908, are tested from 10 ns MD simulations with respect to protein stability and ability to maintain a structure similar to the crystal structure. The trajectories for the most prospective combinations of protonation states were elongated to 50 ns and subjected to more detailed analysis, including prediction of pK(a) values of the four acidic residues over the trajectories. From the simulations we find that the combination leaving only Asp800 as charged is most likely. The results are compared to available experimental data and explain the observed destabilization upon full deprotonation, resulting in the entry of cytoplasmic K? ions into the Ca2? binding sites during the simulation in which Ca2? ions are absent. Furthermore, a hypothesis for the exchange of protons from the central binding cavity is proposed.  相似文献   

4.
Hearing relies on the ability of the inner ear to convert sound waves into electrical signals. The main actors in this process are hair cells. Their stereocilia contain a number of specific proteins and a scaffold of actin molecules. They are organized in bundles by tip-link filaments composed of cadherin 23 and protocadherin 15. The bundle is deflected by sound waves leading to the opening of mechano-transduction channels and to the influx of K(+) and Ca(2+) into the stereocilia. Cadherin 23 and the plasma membrane calcium ATPase isoform 2 (PMCA2) are defective in human and murine cases of deafness. While the involvement of cadherin 23 in deafness/hearing could be expected due to its structural role in the tip-links, that of PMCA2 has been discovered only recently. This review will summarize the structural and functional characteristics of hair cells, focusing on the proteins whose mutations may lead to a deafness phenotype.  相似文献   

5.
AD (Alzheimer's disease) is an age-associated neurodegenerative disorder where the accumulation of neurotoxic Aβ (amyloid β-peptide) in senile plaques is a typical feature. Recent studies point out a relationship between Aβ neurotoxicity and Ca2+ dyshomoeostasis, but the molecular mechanisms involved are still under discussion. The PMCAs (plasma membrane Ca2+-ATPases) are a multi-isoform family of proteins highly expressed in brain that is implicated in the maintenance of low intraneural Ca2+ concentration. Therefore the malfunction of this pump may also be responsible for Ca2+ homoeostasis failure in AD. We have found that the Ca2+-dependence of PMCA activity is affected in human brains diagnosed with AD, being related to the enrichment of Aβ. The peptide produces an inhibitory effect on the activity of PMCA which is isoform-specific, with the greatest inhibition of PMCA4. Besides, cholesterol blocked the inhibitory effect of Aβ, which is consistent with the lack of any Aβ effect on PMCA4 found in cholesterol-enriched lipid rafts isolated from pig brain. These observations suggest that PMCAs are a functional component of the machinery that leads to Ca2+ dysregulation in AD and propose cholesterol enrichment in rafts as a protector of the Aβ-mediated inhibition on PMCA.  相似文献   

6.
Cardiomyocytes from failing hearts exhibit reduced levels of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA) and/or increased activity of the endogenous SERCA inhibitor phospholamban. The resulting reduction in the Ca(2+) affinity of SERCA impairs SR Ca(2+) cycling in this condition. We have previously investigated the physiological impact of increasing the Ca(2+) affinity of SERCA by substituting SERCA2a with the higher affinity SERCA2b pump. When phospholamban was also ablated, these double knockouts (DKO) exhibited a dramatic reduction in total SERCA levels, severe hypertrophy, and diastolic dysfunction. We presently examined the role of cardiomyocyte Ca(2+) homeostasis in both functional and structural remodeling in these hearts. Despite the low SERCA levels in DKO, we observed near-normal Ca(2+) homeostasis with rapid Ca(2+) reuptake even at high Ca(2+) loads and stimulation frequencies. Well-preserved global Ca(2+) homeostasis in DKO was paradoxically associated with marked activation of the Ca(2+)-dependent nuclear factor of activated T-cell-calcineurin pathway known to trigger hypertrophy. No activation of the MAP kinase signaling pathway was detected. These findings suggest that local changes in Ca(2+) homeostasis may play an important signaling role in DKO, perhaps due to reduced microdomain Ca(2+) buffering by SERCA2b. Furthermore, alterations in global Ca(2+) homeostasis can also not explain impaired in vivo diastolic function in DKO. Taken together, our results suggest that normalizing global cardiomyocyte Ca(2+) homeostasis does not necessarily protect against hypertrophy and heart failure development and that excessively increasing SERCA Ca(2+) affinity may be detrimental.  相似文献   

7.
Glycine release provoked by ion dysregulations typical of some neuropathological conditions was analyzed in cerebellar synaptosomes selectively pre-labelled with [3H]glycine through GlyT2 transporters and exposed in superfusion to KCl, 4-aminopyridine (4-AP) or veratridine. The overflows caused by relatively low concentrations of the releasers were largely external Ca2?-dependent. Higher concentrations of KCl (50 mM) or veratridine (10 μM), but not of 4-AP (1 mM), involved also external Ca2?-independent mechanisms. GlyT1-mediated release could not be observed; only the external Ca2?-independent veratridine-evoked overflow occurred significantly by GlyT2 reversal. None of the three depolarizing agents activated store-operated or transient receptor potential or L-type Ca2? channels. The overflows caused by KCl or 4-AP occurred in part by N- and P/Q-type voltage-sensitive calcium channel-dependent exocytosis. Significant portions of the external Ca2?-dependent overflow evoked by KCl or 4-AP (and all that caused by veratridine) were mediated by reverse plasmalemmal Na?/Ca2? exchangers. Significant contribution to the overflows evoked by KCl or veratridine came from Ca2? originated through mitochondrial Na?/Ca2? exchangers. Ca2?-induced Ca2? release (CICR) mediated by inositoltrisphosphate receptors (InsP?Rs) represents the final trigger of the glycine release evoked by high KCl. The overflows evoked by 4-AP or, less so, by veratridine also involved InsP?R-mediated CICR and, in part, CICR mediated by ryanodine receptors. To conclude, ionic dysregulations typical of ischemia and epilepsy caused glycine release in cerebellum by multiple differential mechanisms that may represent potential therapeutic targets.  相似文献   

8.
Modulation of L-type Ca(2+) current (I(Ca,L)) by H(+) ions in cardiac myocytes is controversial, with widely discrepant responses reported. The pH sensitivity of I(Ca,L) was investigated (whole cell voltage clamp) while measuring intracellular Ca(2+) (Ca(2+)(i)) or pH(i) (epifluorescence microscopy) in rabbit and guinea pig ventricular myocytes. Selectively reducing extracellular or intracellular pH (pH(o) 6.5 and pH(i) 6.7) had opposite effects on I(Ca,L) gating, shifting the steady-state activation and inactivation curves to the right and left, respectively, along the voltage axis. At low pH(o), this decreased I(Ca,L), whereas at low pH(i), it increased I(Ca,L) at clamp potentials negative to 0 mV, although the current decreased at more positive potentials. When Ca(2+)(i) was buffered with BAPTA, the stimulatory effect of low pH(i) was even more marked, with essentially no inhibition. We conclude that extracellular H(+) ions inhibit whereas intracellular H(+) ions can stimulate I(Ca,L). Low pH(i) and pH(o) effects on I(Ca,L) were additive, tending to cancel when appropriately combined. They persisted after inhibition of calmodulin kinase II (with KN-93). Effects are consistent with H(+) ion screening of fixed negative charge at the sarcolemma, with additional channel block by H(+)(o) and Ca(2+)(i). Action potential duration (APD) was also strongly H(+) sensitive, being shortened by low pH(o), but lengthened by low pH(i), caused mainly by H(+)-induced changes in late Ca(2+) entry through the L-type Ca(2+) channel. Kinetic analyses of pH-sensitive channel gating, when combined with whole cell modeling, successfully predicted the APD changes, plus many of the accompanying changes in Ca(2+) signaling. We conclude that the pH(i)-versus-pH(o) control of I(Ca,L) will exert a major influence on electrical and Ca(2+)-dependent signaling during acid-base disturbances in the heart.  相似文献   

9.
Although the 3D structure of the Ca(2+)-bound CaM (Ca(2+)/CaM) complex with the antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7), has been resolved, the dynamic changes in Ca(2+)/CaM structure upon interaction with W-7 are still unknown. We investigated time- and temperature-dependent dynamic changes in Ca(2+)/CaM interaction with W-7 in physiological conditions using one- and two-dimensional Fourier-transformed infrared spectroscopy (2D-IR). We observed changes in the α-helix secondary structure of Ca(2+)/CaM when complexed with W-7 at a molar ratio of 1:2, but not at higher molar ratios (between 1:2 and 1:5). Kinetic studies revealed that, during the initial 125s at 25°C, Ca(2+)/CaM underwent formation of secondary coil and turn structures upon binding to W-7. Variations in temperature that induced significant changes in the structure of the Ca(2+)/CaM complex failed to do so when Ca(2+)/CaM was complexed with W-7. We concluded that W-7 induced stepwise conformational changes in Ca(2+)/CaM that resulted in a rigidification of the complex and its inability to interact with target proteins and/or polypeptides.  相似文献   

10.
STIM1 is a core component of the store‐operated Ca2+‐entry channel involved in Ca2+‐signaling with an important role in the activation of immune cells and many other cell types. In response to cell activation, STIM1 protein senses low Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) and activates the channel protein Orai1 in the plasma membrane by direct physical contact. The related protein STIM2 functions similar but its physiological role is less well defined. We found that STIM2, but not STIM1, contains a di‐lysine ER‐retention signal. This restricts the function of STIM2 as Ca2+ sensor to the ER while STIM1 can reach the plasma membrane. The intracellular distribution of STIM1 is regulated in a cell‐cycle‐dependent manner with cell surface expression of STIM1 during mitosis. Efficient retention of STIM1 in the ER during interphase depends on its lysine‐rich domain and a di‐arginine ER retention signal. Store‐operated Ca2+‐entry enhanced ER retention, suggesting that trafficking of STIM1 is regulated and this regulation contributes to STIM1s role as multifunctional component in Ca2+‐signaling.  相似文献   

11.
There is considerable interest in potential ergogenic and therapeutic effects of increasing skeletal muscle carnosine content, although its effects on excitation-contraction (EC) coupling in human muscle have not been defined. Consequently, we sought to characterize what effects carnosine, at levels attained by supplementation, has on human muscle fiber function, using a preparation with all key EC coupling proteins in their in situ positions. Fiber segments, obtained from vastus lateralis muscle of human subjects by needle biopsy, were mechanically skinned, and their Ca(2+) release and contractile apparatus properties were characterized. Ca(2+) sensitivity of the contractile apparatus was significantly increased by 8 and 16 mM carnosine (increase in pCa(50) of 0.073 ± 0.007 and 0.116 ± 0.006 pCa units, respectively, in six type I fibers, and 0.063 ± 0.018 and 0.103 ± 0.013 pCa units, respectively, in five type II fibers). Caffeine-induced force responses were potentiated by 8 mM carnosine in both type I and II fibers, with the potentiation in type II fibers being entirely explicable by the increase in Ca(2+) sensitivity of the contractile apparatus caused by carnosine. However, the potentiation of caffeine-induced responses caused by carnosine in type I fibers was beyond that expected from the associated increase in Ca(2+) sensitivity of the contractile apparatus and suggestive of increased Ca(2+)-induced Ca(2+) release. Thus increasing muscle carnosine content likely confers benefits to muscle performance in both fiber types by increasing the Ca(2+) sensitivity of the contractile apparatus and possibly also by aiding Ca(2+) release in type I fibers, helping to lessen or slow the decline in muscle performance during fatiguing stimulation.  相似文献   

12.
Ca(2+)-induced delayed afterdepolarizations (DADs) are depolarizations that occur after full repolarization. They have been observed across multiple species and cell types. Experimental results have indicated that the main cause of DADs is Ca(2+) overload. The main hypothesis as to their initiation has been Ca(2+) overflow from the overloaded sarcoplasmic reticulum (SR). Our results using 37 previously published mathematical models provide evidence that Ca(2+)-induced DADs are initiated by the same mechanism as Ca(2+)-induced Ca(2+) release, i.e., the modulation of the opening of ryanodine receptors (RyR) by Ca(2+) in the dyadic subspace; an SR overflow mechanism was not necessary for the induction of DADs in any of the models. The SR Ca(2+) level is better viewed as a modulator of the appearance of DADs and the magnitude of Ca(2+) release. The threshold for the total Ca(2+) level within the cell (not only the SR) at which Ca(2+) oscillations arise in the models is close to their baseline level (~1- to 3-fold). It is most sensitive to changes in the maximum sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump rate (directly proportional), the opening probability of RyRs, and the Ca(2+) diffusion rate from the dyadic subspace into the cytosol (both indirectly proportional), indicating that the appearance of DADs is multifactorial. This shift in emphasis away from SR overload as the trigger for DADs toward a multifactorial analysis could explain why SERCA overexpression has been shown to suppress DADs (while increasing contractility) and why DADs appear during heart failure (at low SR Ca(2+) levels).  相似文献   

13.
Astrocytes are important glial cells in the brain providing metabolic support to neurons as well as contributing to brain signaling. These different functional levels have to be highly coordinated to allow for proper cell and brain function. In this study, we show that in astrocytes the NAD(+) /NADH redox state modulates dopamine-induced Ca(2+) signals thereby connecting metabolism and Ca(2+) signaling. Application of dopamine induced a dose-dependent increase in Ca(2+) signal frequency in these cells, which was dependent on D(1) -receptor signaling, glycolytic activity, an increase in cytosolic NADH and inositol 1,4,5-triphosphate receptor operated intracellular Ca(2+) stores. Application of dopamine at a low concentration (1 μM) did not induce an increase in Ca(2+) signal frequency by itself. However, simultaneously increasing cytosolic NADH content either by direct application of NADH or by application of lactate resulted in a pronounced increase in Ca(2+) signal frequency. This increase could be blocked by co-application of pyruvate, suggesting that indeed the NAD(+) /NADH redox state is regulating Ca(2+) signals. We conclude that at the NAD(+) /NADH redox state metabolic and signaling information is integrated in astrocytes, thereby most likely contributing to precisely coordinate these different tasks of astrocytes.  相似文献   

14.
Two‐pore channels (TPC) have been established as components of calcium signalling networks in plants and animals. In plants, TPC1 in the vacuolar membrane is gated open upon binding of calcium in a voltage‐dependent manner. Here, we analyzed the molecular mechanism of the Ca2+‐dependent activity of TPC1 from Arabidopsis thaliana, using site‐directed mutagenesis of its two canonical EF‐hands. Wild‐type TPC1 and TPC1‐D335A with a mutated first Ca2+ ligand in EF‐hand 1 produced channels that retained their voltage‐ and Ca2+‐dependent gating characteristics, but were less sensitive at Ca2+ concentrations <200 μm . Additional mutation of the first Ca2+ ligand in EF‐hand 2 resulted in silent TPC1‐D335A/D376A channels. Similarly, the single mutant TPC1‐D376A could not be activated up to 1 mm Ca2+, indicating that the second EF‐hand is essential for the Ca2+‐dependent channel gating. Molecular modeling suggests that EF‐hand 1 displays a low‐affinity Ca2+/Mg2+‐binding site, while EF‐hand 2 represents a high‐affinity Ca2+‐binding site. Together, our data prove that EF‐hand 2 is responsible for the Ca2+‐receptor characteristics of TPC1, while EF‐hand 1 is a structural site required to enable channel responses at physiological changes in Ca2+ concentration.  相似文献   

15.
Adenosine-to-inosine RNA editing is crucial for generating molecular diversity, and serves to regulate protein function through recoding of genomic information. Here, we discover editing within Ca(v)1.3 Ca2? channels, renown for low-voltage Ca2?-influx and neuronal pacemaking. Significantly, editing occurs within the channel's IQ domain, a calmodulin-binding site mediating inhibitory Ca2?-feedback (CDI) on channels. The editing turns out to require RNA adenosine deaminase ADAR2, whose variable activity could underlie a spatially diverse pattern of Ca(v)1.3 editing seen across the brain. Edited Ca(v)1.3 protein is detected both in brain tissue and within the surface membrane of primary neurons. Functionally, edited Ca(v)1.3 channels exhibit strong reduction of CDI; in particular, neurons within the suprachiasmatic nucleus show diminished CDI, with higher frequencies of repetitive action-potential and calcium-spike activity, in wild-type versus ADAR2 knockout mice. Our study reveals a mechanism for fine-tuning Ca(v)1.3 channel properties in CNS, which likely impacts a broad spectrum of neurobiological functions.  相似文献   

16.
The Na?/Ca2? exchangers are structural membrane proteins, essential for the extrusion of Ca2? from most animal cells. Apart from the transport sites, they have several interacting ionic and metabolic sites located at the intracellular loop of the exchanger protein. One of these, the intracellular Ca2? regulatory sites, are essential and must be occupied by Ca2? to allow any type of ion (Na? or Ca2?) translocation. Intracellular protons and Na? are inhibitory by reducing the affinity of the regulatory sites for Ca2?; MgATP stimulates by antagonizing H? and Na?. We have proposed a kinetic scheme to explain all ionic and metabolic regulation of the squid nerve Na?/Ca2? exchanger. This model uniquely accounts for most of the new kinetic data provided here; however, none of the existing models can explain the trans effects of the Ca(i)2?-regulatory sites on external cation transport sites; i.e. all models are incomplete. MgATP up-regulation of the squid Na?/Ca2? exchanger requires a cytosolic protein, which has been recently identified as a member of the lipocalin super family of Lipid Binding Proteins (LBP or FABP) of 132 amino acids (ReP1-NCXSQ, access to GenBank EU981897). This protein was cloned, expressed and purified. To be active, ReP1-NCXSQ must be phosphorylated from MgATP by a kinase present in the plasma membrane. Phosphorylated ReP1-NCXSQ can stimulate the exchanger in the absence of ATP. Experiments with proteoliposomes proved that this up-regulation can take place just with the lipid membrane and the exchanger protein. The structure of ReP1-NCXSQ predicted from the amino acid sequence has been confirmed by X-ray crystal analysis; it has a "barrel" formed by ten beta sheets and two alpha helices, with a lipid coordinated by hydrogen bonds with Arg 126 and Tyr 128.  相似文献   

17.
The regulation of cortisol synthesis and the expression of genes coding for steroidogenic proteins by 8-substituted cAMP and 8-substituted adenine derivatives were studied in bovine adrenal zona fasciculata (AZF) cells. At concentrations of 10-50 μM, 8-(4-chlorophenylthio)-cAMP (8CPT-cAMP), but not the poorly hydrolyzable Sp-8CPT-cAMP, stimulated large increases in cortisol synthesis and CYP17 mRNA expression. Of the three Epac (exchange protein activated by cAMP)-specific cAMP analogs, 8CPT-2'-OMe-cAMP, but not 8HPT-2'-OMe-cAMP or 8MeOPT-2'-OMe-cAMP, induced mRNAs for CYP17 and CYP11a1 steroid hydroxylases and stimulated cortisol synthesis. 8-Substituted adenine derivatives (10-200 μM), including 8PT-adenine, 8MeOPT-adenine, and 8CPT-adenine, stimulated similar large, concentration-dependent, and reversible increases in cortisol synthesis and steroid hydroxylase gene expression, whereas 8Br-adenine was ineffective. The phenylthio-adenine derivatives produced additive effects on cortisol synthesis when applied to AZF cells in combination with 8Br-cAMP. In contrast, no additivity was observed for these three compounds when used in combination with ACTH. 8PT-adenine did not activate PKA or inhibit DNA synthesis by AZF cells. 8PT-adenine-stimulated cortisol secretion and CYP17 steroid hydroxylase mRNA expression were potently inhibited by diphenyl-butylpiperidine T-type Ca(2+) antagonists. In AZF cells, 8PT-adenine and 8MeOPT-adenine induced the expression of both CACNA1H mRNA and associated Ca(v)3.2 Ca(2+) current. These results indicate that 8-chloro (but not 8-hydroxy- or 8-methoxy-)-phenylthio-cAMP analogs are converted to an active metabolite, 8CPT-adenine, that induces the expression of genes coding for steroidogenic proteins in bovine AZF cells. Other PT-adenine analogs also potently stimulate cortisol synthesis through the same unidentified signaling pathway that requires the expression of functional Ca(v)3.2 Ca(2+) channels. These phenylthio-adenine compounds and ACTH may stimulate cortisol synthesis through the same cAMP-independent mechanism.  相似文献   

18.
Recent physiological work has shown that the filamentous euendolithic cyanobacterium Mastigocoleus testarum (strain BC008) is able to bore into solid carbonates using Ca2+-ATPases to take up Ca2+ from the medium at the excavation front, promoting dissolution of CaCO3 there. It is not known, however, if this is a widespread mechanism or, rather, a unique capability of this model strain. To test this, we undertook a survey of multispecies euendolithic microbial assemblages infesting natural carbonate substrates in marine coastal waters of the Caribbean, Mediterranean, South Pacific, and Sea of Cortez. Microscopic examination revealed the presence of complex assemblages of euendoliths, encompassing 3 out of the 5 major cyanobacterial orders. 16S rRNA gene clone libraries detected even greater diversity, particularly among the thin-filamentous forms, and allowed us to categorize the endoliths in our samples into 8 distinct phylogenetic clades. Using real-time Ca2+ imaging under a confocal laser scanning microscope, we could show that all communities displayed light-dependent formation of Ca2+-supersaturated zones in and around boreholes, a staple of actively boring phototrophs. In 3 out of 4 samples, boring activity was sensitive to at least one of two inhibitors of Ca2+-ATPase transporters (thapsigargin or tert-butylhydroquinone), indicating that the Ca2+-ATPase mechanism is widespread among cyanobacterial euendoliths but perhaps not universal. Function-community structure correlations point to one particular clade of baeocyte-forming euendoliths as the potential exception.  相似文献   

19.
The dynamin-related GTPase protein OPA1, localized in the intermembrane space and tethered to the inner membrane of mitochondria, participates in the fusion of these organelles. Its mutation is the most prevalent cause of Autosomal Dominant Optic Atrophy. OPA1 controls the diameter of the junctions between the boundary part of the inner membrane and the membrane of cristae and reduces the diffusibility of cytochrome c through these junctions. We postulated that if significant Ca2+ uptake into the matrix occurs from the lumen of the cristae, reduced expression of OPA1 would increase the access of Ca2+ to the transporters in the crista membrane and thus would enhance Ca2+ uptake. In intact H295R adrenocortical and HeLa cells cytosolic Ca2+ signals evoked with K+ and histamine, respectively, were transferred into the mitochondria. The rate and amplitude of mitochondrial [Ca2+] rise (followed with confocal laser scanning microscopy and FRET measurements with fluorescent wide-field microscopy) were increased after knockdown of OPA1, as compared with cells transfected with control RNA or mitofusin1 siRNA. Ca2+ uptake was enhanced despite reduced mitochondrial membrane potential. In permeabilized cells the rate of Ca2+ uptake by depolarized mitochondria was also increased in OPA1-silenced cells. The participation of Na+/Ca2+ and Ca2+/H+ antiporters in this transport process is indicated by pharmacological data. Altogether, our observations reveal the significance of OPA1 in the control of mitochondrial Ca2+ metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号