首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
Glycogenin-1 initiates the glycogen synthesis in skeletal muscle by the autocatalytic formation of a short oligosaccharide at tyrosine 195. Glycogenin-1 catalyzes both the glucose-O-tyrosine linkage and the α1,4 glucosidic bonds linking the glucose molecules in the oligosaccharide. We recently described a patient with glycogen depletion in skeletal muscle as a result of a non-functional glycogenin-1. The patient carried a Thr83Met substitution in glycogenin-1. In this study we have investigated the importance of threonine 83 for the catalytic activity of glycogenin-1. Non-glucosylated glycogenin-1 constructs, with various amino acid substitutions in position 83 and 195, were expressed in a cell-free expression system and autoglucosylated in vitro. The autoglucosylation was analyzed by gel-shift on western blot, incorporation of radiolabeled UDP-14C-glucose and nano-liquid chromatography with tandem mass spectrometry (LC/MS/MS). We demonstrate that glycogenin-1 with the Thr83Met substitution is unable to form the glucose-O-tyrosine linkage at tyrosine 195 unless co-expressed with the catalytically active Tyr195Phe glycogenin-1. Our results explain the glycogen depletion in the patient expressing only Thr83Met glycogenin-1 and why heterozygous carriers without clinical symptoms show a small proportion of unglucosylated glycogenin-1.  相似文献   

2.
Glycogen synthesis is initiated by self-glucosylation of the glycosyltransferases glycogenin-1 and -2 that, in the presence of UDP-glucose, form both the first glucose-O-tyrosine linkage, and then stepwise add a series of α1,4-linked glucoses to a growing chain of variable length. Glycogen-1 and -2 coexist in liver glycogen preparations where the proteins are known to form homodimers, and they also have been shown to interact with each other. In order to study how glycogenin-1 and -2 interactions may influence each other's glucosylations we setup a cell-free expression system for in vitro production and glucosylation of glycogenin-1 and -2 in various combinations, and used a mass spectrometry based workflow for the characterization and quantitation of tryptic glycopeptides originating from glycogenin-1 and -2. The analysis revealed that the self-glucosylation endpoint was the incorporation of 4–8 glucose units on Tyr 195 of glycogenin-1, but only 0–4 glucose units on Tyr-228 of glycogenin-2. The glucosylation of glycogenin-2 was enhanced to 2–4 glucose units by the co-presence of enzymatically active glycogenin-1. Glycogenin-2 was, however, unable to glucosylate inactive glycogenin-1, at least not an enzymatically inactivated Thr83Met glycogenin-1 mutant, recently identified in a patient with severe glycogen depletion.  相似文献   

3.
4.
Zhai L  Mu J  Zong H  DePaoli-Roach AA  Roach PJ 《Gene》2000,242(1-2):229-235
Glycogenin-2 is one of two self-glucosylating proteins involved in the initiation phase of the synthesis of the storage polysaccharide glycogen. Cloning of the human glycogenin-2 gene, GYG2, has revealed the presence of 11 exons and a gene of more than 46 kb in size. The structure of the gene explains much of the observed diversity in glycogenin-2 cDNA sequences as being due to alternate exon usage. In some cases, there is variation in the splice junctions used. Over regions of protein sequence similarity, the GYG2 gene structure is similar to that of the other glycogenin gene, GYG. A genomic GYG2 clone was used to localize the gene to Xp22.3 by fluorescence in-situ hybridization. Localization close to the telomere of the short arm of the X chromosome is consistent with mapping information obtained from glycogenin-2 STS sequences. Glycogenin-2 maps between the microsatellite anchor markers AFM319te9 (DXS7100) and AFM205tf2 (DXS1060), and its 3' end is 34.5 kb from the 3' end of the arylsulphatase gene ARSD. GYG2 is outside the pseudoautosomal region PAR1 but still in a region of X-Y shared genes. As is true for several other genes in this location, an inactive remnant of GYG2, consisting of exons 1-3, may be present on the Y chromosome.  相似文献   

5.
6.
Glycogen synthase plays a key role in regulating glycogen metabolism. In a search for regulators of glycogen synthase, a yeast two-hybrid study was performed. Two glycogen synthase-interacting proteins were identified in human skeletal muscle, glycogenin-1, and nebulin. The interaction with glycogenin was found to be mediated by the region of glycogenin which contains the 33 COOH-terminal amino acid residues. The regions in glycogen synthase containing both NH2- and COOH-terminal phosphorylation sites are not involved in the interaction. The core segment of glycogen synthase from Glu21 to Gly503 does not bind COOH-terminal fragment of glycogenin. However, this region of glycogen synthase binds full-length glycogenin indicating that glycogenin contains at least one additional interacting site for glycogen synthase besides the COOH-terminus. We demonstrate that the COOH-terminal fragment of glycogenin can be used as an effective high affinity reagent for the purification of glycogen synthase from skeletal muscle and liver.  相似文献   

7.
Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (<1% of total protein phosphorylation), only a few tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca(2+) homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states.  相似文献   

8.
In vitro incubation of isolated rodent skeletal muscle is a widely used procedure in metabolic research. One concern with this method is the development of an anoxic state during the incubation period that can cause muscle glycogen depletion. Our aim was to investigate whether in vitro incubation conditions influence glycogen concentration in glycolytic extensor digitorum longus (EDL) and oxidative soleus mouse muscle. Quantitative immunohistochemistry was applied to assess glycogen content in incubated skeletal muscle. Glycogen concentration was depleted, independent of insulin‐stimulation in the incubated skeletal muscle. The extent of glycogen depletion was correlated with the oxidative fibre distribution and with the induction of hypoxia‐induced‐factor‐1‐alpha. Insulin exposure partially prevented glycogen depletion in soleus, but not in EDL muscle, providing evidence that glucose diffusion is not a limiting step to maintain glycogen content. Our results provide evidence to suggest that the anoxic milieu and the intrinsic characteristics of the skeletal muscle fibre type play a major role in inducing glycogen depletion in during in vitro incubations. J. Cell. Biochem. 107: 1189–1197, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
BackgroundDiabetes mellitus is a chronic metabolic disease characterized by increased blood glucose levels. In order to lower blood glucose, it is important to stimulate glucose uptake and glycogen synthesis in the muscle. (E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone (HM-chromanone), a constituent isolated from Portulaca oleracea L., exhibits anti-diabetic effects; however, its mechanisms are not yet clearly understood on glucose uptake and glycogen synthesis in muscle cells.PurposeIn the present study, we examined the effects of HM-chromanone on glucose uptake into L6 skeletal muscle cells and elucidated the underlying mechanisms.MethodsThe effects of HM-chromanone on glucose uptake into L6 skeletal muscle cells were assessed by 2-Deoxyglucose uptake assay. Western blot analysis was carried out to elucidate the underlying molecular mechanisms.ResultsWe found that HM-chromanone promoted glucose uptake into L6 skeletal muscle cells in a dose-dependent manner. Moreover, HM-chromanone induced the phosphorylation of IRS-1Tyr612 and AKTSer473, and the activation of PI3K. HM-chromanone also stimulated the phosphorylation of AMPKThr172, AS160Thr642, TBC1D1Ser237, and ACC via the CaMKKβ pathway. Furthermore, HM-chromanone increased glycogen synthesis through the inactivation of glycogen synthase kinase 3 α/β.ConclusionThe results of this study indicate that HM-chromanone stimulates glucose uptake through the activation of the PI3K/AKT and CaMKKβ-AMPK pathways and glycogen synthesis via the GSK3 α/β pathway in L6 skeletal muscle cells.  相似文献   

10.
Polysaccharide storage myopathy (PSSM) is a novel glycogenosis in horses characterized by abnormal glycogen accumulation in skeletal muscle and muscle damage with exertion. It is unlike glycogen storage diseases resulting from known defects in glycogenolysis, glycolysis, and glycogen synthesis that have been described in humans and domestic animals. A genome-wide association identified GYS1, encoding skeletal muscle glycogen synthase (GS), as a candidate gene for PSSM. DNA sequence analysis revealed a mutation resulting in an arginine-to-histidine substitution in a highly conserved region of GS. Functional analysis demonstrated an elevated GS activity in PSSM horses, and haplotype analysis and allele age estimation demonstrated that this mutation is identical by descent among horse breeds. This is the first report of a gain-of-function mutation in GYS1 resulting in a glycogenosis.  相似文献   

11.
12.
Nonenzymatic glycation is increased in diabetes and leads to increased levels of glycated proteins. Most studies have focused on the role of glycation products in vascular complications. Here, we have investigated the action of human glycated albumin (HGA) on insulin signaling in L6 skeletal muscle cells. Exposure of these cells to HGA inhibited insulin-stimulated glucose uptake and glycogen synthase activity by 95 and 80%, respectively. These effects were time- and dose-dependent, reaching a maximum after 12 h incubation with 0.1 mg/ml HGA. In contrast, exposure of the cells to HGA had no effect on thymidine incorporation. Further, HGA reduced insulin-stimulated serine phosphorylation of PKB and GSK3, but did not alter ERK1/2 activation. HGA did not affect either insulin receptor kinase activity or insulin-induced Shc phosphorylation on tyrosine. In contrast, insulin-dependent IRS-1 and IRS-2 tyrosine phosphorylation was severely reduced in cells preincubated with HGA for 24 h. Insulin-stimulated association of PI3K with IRS-1 and IRS-2, and PI3K activity were reduced by HGA in parallel with the changes in IRS tyrosine phosphorylation, while Grb2-IRS association was unchanged. In L6 myotubes, exposure to HGA increased PKC activity by 2-fold resulting in a similar increase in Ser/Thr phosphorylation of IRS-1 and IRS-2. These phosphorylations were blocked by the PKC inhibitor bisindolylmaleimide (BDM). BDM also blocked the action of HGA on insulin-stimulated PKB and GSK3 alpha. Simultaneously, BDM rescued insulin-stimulation of glucose uptake and glycogen synthase activity in cells exposed to HGA. The use of antibodies specific to PKC isoforms shows that this effect appears to be mediated by activated PKC alpha, independent of reactive oxygen species production. In summary, in L6 skeletal muscle cells, exposure to HGA leads to insulin resistance selectively in glucose metabolism with no effect on growth-related pathways regulated by the hormone.  相似文献   

13.
Previous studies showed an insulin-"desensitizing" action of IL-6 on glycogen synthesis in hepatocytes. We recently found no inhibition of the proximal steps of the insulin signal cascade in human skeletal muscle cells. Because these data indicate a possible tissue-specific effect of IL-6, we investigated the influence of IL-6 on insulin-stimulated glycogen synthesis in these cells. At first, we found that incubation of the cells with 20 ng/ml IL-6 alone induced phosphorylation of Ser473 of Akt, but not of Thr308 time dependently and we observed that IL-6 augments insulin-induced Ser473 and Thr308 phosphorylation in the low nanomolar range of insulin. Moreover, IL-6 increased insulin-stimulated phosphorylation of glycogen synthase kinase-3. Accordingly, IL-6 enhanced glycogen synthesis in the presence of 3 and 10 nM insulin, whereas IL-6 alone had only a marginal effect. IL-6 treatment of C57Bl/6 mice readily stimulated phosphorylation of Ser473 in skeletal muscle. Our result that IL-6 did not induce Ser473 phosphorylation in the liver of these mice suggests a tissue-specific effect. Together, our data demonstrate a novel insulin-sensitizing function of IL-6 on glycogen synthesis in skeletal muscle cells and indicate that IL-6 exerts cell/tissue-specific effects on insulin action.  相似文献   

14.
MS was used to characterize the 24 kDa human growth hormone (hGH) glycoprotein isoform and determine the locus of O‐linked oligosaccharide attachment, the oligosaccharide branching topology, and the monosaccharide sequence. MALDI‐TOF/MS and ESI‐MS/MS analyses of glycosylated 24 kDa hGH tryptic peptides showed that this hGH isoform is a product of the hGH normal gene. Analysis of the glycoprotein hydrolysate by high‐performance anion‐exchange chromatography with pulsed amperometric detection and HPLC with fluorescent detection for N‐acetyl neuraminic acid (NeuAc) yielded the oligosaccharide composition (NeuAc2, N‐acetyl galactosamine1, Gal1). After β‐elimination to release the oligosaccharide from glycosylated 24 kDa hGH, collision‐induced dissociation of tryptic glycopeptide T6 indicated that there had been an O‐linked oligosaccharide attached to Thr‐60. The sequence and branching structure of the oligosaccharide were determined by ESI‐MS/MS analysis of tryptic glycopeptide T6. The mucin‐like O‐oligosaccharide sequence linked to Thr‐60 begins with N‐acetyl galactosamine and branches in a bifurcated topology with one appendage consisting of galactose followed by NeuAc and the other consisting of a single NeuAc. The oligosaccharide moiety lies in the high‐affinity binding site 1 structural epitope of hGH that interfaces with both the growth hormone and the prolactin receptors and is predicted to sterically affect receptor interactions and alter the biological actions of hGH.  相似文献   

15.
The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents and humans. In this study, we used Akt2 knockout mice to explore the role of Akt2 in exercise-stimulated glucose uptake and glycogen synthesis as well as intracellular signaling pathways that regulate glycogen metabolism in skeletal muscle. We found that Akt2 deficiency does not affect basal or exercise-stimulated glucose uptake or intracellular glycogen content in the soleus muscle. In addition, lack of Akt2 did not result in alterations in basal Akt Thr(308) or basal and contraction-stimulated glycogen synthase kinase-3beta (GSK-3beta) Ser(9) phosphorylation, glycogen synthase phosphorylation, or glycogen synthase activity. In contrast, in situ contraction failed to elicit normal increases in Akt T-loop Thr(308) phosphorylation and GSK-3alpha Ser(21) phosphorylation in tibialis anterior muscles from Akt2-deficient animals. Our data establish a key role for Akt2 in the regulation of GSK-3alpha Ser(21) phosphorylation with contraction and add genetic evidence to support the separation of the intracellular pathways regulated by insulin and exercise that converge on glucose uptake and glycogen synthesis in skeletal muscle.  相似文献   

16.
The discovery of glycogenin and the priming mechanism for glycogen biogenesis   总被引:11,自引:0,他引:11  
The biogenesis of glycogen in skeletal muscle requires a priming mechanism that has recently been elucidated. The first step is catalysed by a protein tyrosine glucosyltransferase and involves the formation of a novel glycosidic linkage, namely the covalent attachment of glucose to a single tyrosine residue (Tyr194) on a priming protein, termed glycogenin. The next stage is the extension of the glucan chain from Tyr194 and involves the sequential addition of up to seven further glucosyl residues. This reaction is brought about autocatalytically by glycogenin itself, which is a Mn2+/Mg(2+)-dependent UDP-Glc-requiring glucosyltransferase. The glucan primer is elongated by glycogen synthase, but only when glycogenin and glycogen synthase are complexed together. Glycogen synthase dissociates from glycogenin during the synthesis of a glycogen molecule, enabling glycogen molecules to reach their maximum theoretical size. Each mature glycogen beta particle in muscle contains one molecule of glycogenin attached covalently, and an average one glycogen synthase catalytic subunit bound non-covalently. As evidence accumulates that a priming protein may be a fundamental property of polysaccharide synthesis in general, the molecular details of mammalian glycogen biogenesis may serve as a useful model for other systems.  相似文献   

17.
Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new "player," a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization.  相似文献   

18.
Muscle glycogen phosphorylase (GP) is a key enzyme in glucose metabolism, and its impairment can lead to muscle dysfunction. Tyrosine nitration of glycogen phosphorylase occurs during aging and has been suggested to be involved in progressive loss of muscle performance. Here, we show that GP (in its T and R form) is irreversibly impaired by exposure to peroxynitrite, a biological nitrogen species known to nitrate reactive tyrosine residues, and to be involved in physiological and pathological processes. Kinetic and biochemical analysis indicated that irreversible inactivation of GP by peroxynitrite is due to the fast (k(inact)=3 x 10(4) M(-1) s(-1)) nitration of a unique tyrosine residue of the enzyme. Endogenous GP was tyrosine nitrated and irreversibly inactivated in skeletal muscle cells upon exposure to peroxynitrite, with concomitant impairment of glycogen mobilization. Ligand protection assays and mass spectrometry analysis using purified GP suggested that the peroxynitrite-dependent inactivation of the enzyme could be due to the nitration of Tyr613, a key amino acid of the allosteric inhibitor site of the enzyme. Our findings suggest that GP functions may be regulated by tyrosine nitration.  相似文献   

19.
Hepatocyte growth factor (HGF) and its receptor, Met, regulate skeletal muscle differentiation. In the present study, we identified a novel alternatively spliced isoform of Met lacking exon 13 (designated Δ13Met), which is expressed mainly in human skeletal muscle. Alternative splicing yielded a truncated Met having extracellular domain only, suggesting an inhibitory role. Indeed, Δ13Met expression led to a decrease in HGF-induced tyrosine phosphorylation of Met and ERK phosphorylation, as well as cell proliferation and migration via sequestration of HGF. Interestingly, in human primary myoblasts undergoing differentiation, Δ13Met mRNA and protein levels were rapidly increased, concomitantly with a decrease in wild type Met mRNA and protein. Inhibition of Δ13Met with siRNA led to a decreased differentiation, whereas its overexpression potentiated differentiation of human primary myoblasts. Furthermore, in notexin-induced mouse injury model, exogenous Δ13Met expression enhanced regeneration of skeletal muscle, further confirming a stimulatory role of the isoform in muscle cell differentiation. In summary, we identified a novel alternatively spliced inhibitory isoform of Met that stimulates muscle cell differentiation, which confers a new means to control muscle differentiation and/or regeneration.  相似文献   

20.
We have studied rapid and simple sugar mapping using liquid chromatography/electrospray ionization mass spectrometry (LC/MS) equipped with a graphitized carbon column. The oligosaccharide mixture was separated on the basis of the sequence, branching structure, and linkage, and each oligosaccharide was characterized based on its molecular mass. In this study we demonstrated the usefulness of capillary LC/MS (CapLC/MS) and capillary liquid chromatography/tandem mass spectrometry (CapLC/MS/MS) as sensitive means for accomplishing the structural analysis of oligosaccharides in a low-abundance glycoprotein. The carbohydrate heterogeneity and molecular mass information of each oligosaccharide can be readily obtained from CapLC/MS of a small amount of glycoprotein. CapLC/MS/MS provided b-ion series, which is informative with regard to monosaccharide sequence. Exoglycosidase digestion followed by CapLC/MS elucidated a carbohydrate residue linkage. Using this method, we characterized N-linked oligosaccharides in hepatocyte growth factor produced in mouse myeloma NS0 cells as the complex-type bi-, tri-, and tetraantennary terminated with N-glycolylneuraminic acids and alpha-linked galactose residues. Sugar mapping with CapLC/MS and CapLC/MS/MS is useful for monitoring glycosylation patterns and for structural analysis of carbohydrates in a low-abundance glycoprotein and thus will become a powerful tool in biological, pharmaceutical, and clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号