首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two polyphenol oxidase isoforms with distinct expression patterns were identified in hybrid poplar (Populus trichocarpaxP. deltoides). PPO-1, corresponding to the previously cloned PtdPPO (Constabel et al., Plant Physiol. 124: 285-295) was primarily leaf tissue-specific and detected only after wounding. PPO-2 was expressed constitutively in all tissue types tested except mature leaves, with highest expression in very young leaves and conducting tissues such as roots, stems and petioles. These two PPO isoforms were partially purified from hybrid poplar by ammonium sulfate fractionation followed by hydrophobic interaction chromatography. They were found to differ in stability, pH optimum, and activation by SDS. Tests with common phenolic substrates showed that PPO-1 had a broader substrate specificity than PPO-2. The distinct enzymatic properties and expression patterns of these two PPO isoforms suggest that they may have different physiological functions in hybrid poplar.  相似文献   

2.
The polyphenoloxidase (PPO) from black poplar senescent leaves has been purified to almost complete homogeneity by a combination of ammonium sulphate precipitation, Sephadex G75 filtration and DEAE-cellulose chromatography. The purified enzyme has a MW of 60 000 and is probably a Cu+ enzyme. Peroxidase (PO) activity co-purifies with PPO and has the same MW as it. The two enzymes differ in pH optimum and in response to the effect of ionic strength. Natural phenols are either substrates, inhibitors or activators of black poplar PPO. This enzyme is an o-diphenoloxidase which binds substrates with Km in the millimolar range. With caffeic and chlorogenic acids inhibition by excess substrate is observed. Benzoic acid phenols and cinnamic acid phenols are either competitive or non-competitive inhibitors of PPO. Hydroquinone is a highly potent non-competitive inhibitor of the enzyme (Ki  90 μM). Ferulic acid is a potent activator of the PPO-catalysed oxidation of catechol (Ka  0.34 mM, νsato  7.7).  相似文献   

3.
Canam T  Unda F  Mansfield SD 《Planta》2008,228(6):1011-1019
The expression of two hybrid poplar cell-wall invertases (EC 3.2.1.26; PaxgINV1 and PaxgINV2) were previously shown to be spatially and temporally regulated in the vegetative tissues. The expression of PaxgINV1 was linked to processes relating to dormancy, while PaxgINV2 expression was prominent in tissues undergoing growth and expansion. In an effort to further elucidate the physiological roles of these key cell wall enzymes, PaxgINV1 and PaxgINV2 were heterologously expressed in the methylotrophic yeast Pichia pastoris. Three-dimensional predictive models of the poplar invertases revealed a structural channel containing both the conserved β-fructofuranosidase and cell-wall invertase motifs, suggesting that this channel is the putative active site of these enzymes. Recombinant PaxgINV1 and PaxgINV2 had pH optima of 4.8 and 5.6 and temperature optima of 45 and 40°C, respectively. Functional characterization revealed the ability for both enzymes to hydrolyze the fructose residue of sucrose, raffinose, stachyose and verbascose, with PaxgINV2 having higher specific activity for each of the substrates tested. The K m values of sucrose/raffinose/stachyose were 1.7/1.8/5.0 mM for PaxgINV1 and 1.6/1.7/1.9 mM for PaxgINV2, respectively. Activity analyses in the presence of various metal cations showed that PaxgINV2 was strongly inhibited by Cu2+, Zn2+ and Hg2+, while PaxgINV1 was only weakly inhibited by these cations. The results from this study, coupled with previous expression data, suggest that PaxgINV1 and PaxgINV2 have distinct roles with respect to the physiology and development of hybrid poplar, specifically phloem unloading and processes related to dormancy and bud break.  相似文献   

4.
5.
This study identified and characterized the soluble starch synthase of maize endosperm that was initially revealed as the SSII activity peak in anion exchange chromatography (J. L. Ozbun et al. (1971) Plant Physiol. 48, 765-769). At least six different genes coding for starch synthases are expressed in maize, although previously it was not known which of these is responsible for the SSII activity peak. The enzyme activity in the SSII peak was neutralized to a large extent by antibodies raised against the product of the Du1 gene, but was not affected by antibodies specific for the other highly expressed soluble starch synthase, zSSI, or for the zSSIIa or zSSIIb isoforms. These data provide direct evidence that Du1 codes for the starch synthase responsible for the SSII activity peak. This starch synthase was purified approximately 350-fold from endosperm extracts. The following enzymatic properties of the SSII activity were determined: temperature optimum, thermostability, pH effects, K(m) for different glucan primers and the glucosyl unit donor ADPGlc, V(max) using various primers, and stimulation by citrate. These properties were compared to those of zSSI purified over 1600-fold from maize endosperm by a parallel procedure. The major differences between the two enzymes were that the SSII activity displayed higher K(m) values for ADPGlc, a distinct temperature range for maximal activity, and different relative activities toward specific exogenous substrates. The purified SSI and SSII activities both were shown to be capable of elongating maltooligosaccharide primers in vitro.  相似文献   

6.
7.
We have previously reported the presence of GM2 as the major ganglioside in the roe of striped mullet, Mugil cephalus, (Li, Y.-T., Hirabayashi, Y., DeGasperi, R., Yu, R. K., Ariga, T., Koerner, T. A. W., and Li, S.-C. (1984) J. Biol. Chem. 259, 8980-8985). In addition to GM2, mullet roe also contain a series of gangliosides with thin-layer chromatographic mobilities slower than GM2. Besides enzymatic hydrolysis and NMR spectroscopy, we have employed the thin-layer chromatography overlay technique using a human monoclonal IgM antibody which recognizes the GM2 epitope to study the nature of these gangliosides. Using these methods we have isolated and characterized three novel mullet roe gangliosides with the following structures: (Formula: see text). These three gangliosides all contain neolacto-series sugar chains. However, the unique feature of gangliosides 5 and 10 is that the terminal portion of the sugar chain is of the ganglio-series while the internal portion is of the neolacto series structure. Due to the substitution of a GalNAc on the internal Gal in 9 and 10 in the inner core, these two gangliosides also contain the gangliotriaosyl structure. Thus, the sugar chains in these gangliosides are of novel type and can be considered a hybrid between the two series which can be defined as the neolacto-ganglio series.  相似文献   

8.
9.
Phosphorus-induced micronutrient disorders in hybrid poplar   总被引:3,自引:0,他引:3  
Growth and nutrition of four clones (DN 17, DN 125, NM 2, Jac 4) of hybrid poplar in a sandy loam nursery soil, were examined for fertilization response to P at four rates (0, 288, 576, and 1152 kg ha–1) in 1986 and 1987. Except for clone NM 2, fertilization reduced height growth and caused various degrees of leaf symptoms suggesting nutrient disorders. Height of DN 17, the most sensitive of the four clones, was decreased 23 and 47% by the highest P treatment in the first and second year, respectively. Foliar vector diagnosis indicated that P addition induced Zn and/or Cu deficiencies rather than a direct P toxicity, since P vectors were smaller than Zn and Cu vectors. Available P levels in soil were raised proportionally by fertilization, but DTPA-extractable micronutrient status was not affected except for Mn. Differences in leaf P/Zn and P/Cu ratios among clones suggested that the clonal variation in growth performance may be related to maintaining nutritional balance in plants.  相似文献   

10.
The effect of calcium on the nodulation of lucerne was studied using EGTA, a specific calcium-chelator. First, the effects of the chelator were tested on hydroponically grown plants at pH 7.0. Optimal numbers of nodules were obtained in nutrient solution containing 0.2 mM CaCl2. When 0.4 mM EGTA was given additionally, nodulation was completely inhibited. Nodulation was restored specifically with CaCl2, but not with MgCl2. For studies in an acid soil (pH-H2O 5.2), lucerne seedlings were grown in rhizotrons. 67% of the seedlings became nodulated when the soil around the seed was neutralized locally with 1.0 μmol of K2CO3 in drops of 12 μL volume. When native calcium was removed with 2 μmol of EGTA, nodulation was reduced to 12%. However, addition of EGTA to soil resulted in a drop of pH from 6.1 to 5.2. A phosphate buffer could also not keep soil-pH sufficiently stable. Such pH-decreases could be avoided by placing agar blocks containing 6 μmol of EGTA for three hours on freshly developed roots. This treatment reduced nodulation from 87% to 32%, with soil-pH lowering only from 6.2 to 6.0. Nodulation could be restored by adding 2 μmol of CaCl2. The depletion of soil-calcium could depress nodule formation only during the first day after inoculation.  相似文献   

11.
Xylem sap collected from Populus trichocarpa × Populus deltoides using root pressure was estimated to contain more than 100 proteins. Ninety-seven of these proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These proteins were classified into 10 functional categories including metabolism, signaling, stress response and cell wall functions. The majority of xylem sap proteins were metabolic enzymes involved in processes including translation, proteolysis, and glycolysis. Stress-related proteins were also prevalent. In contrast to xylem sap proteins collected from annual plants, the majority of poplar xylem sap proteins do not appear to be classically secreted since only 33 proteins were predicted to have an N-terminal signal peptide targeting them to the secretory pathway. Of the remaining 64 proteins, 27 were predicted to be secreted non-classically. While a number of proteins identified here have been previously reported in xylem sap proteomes of annual plants, many xylem sap proteins were identified in poplar which may reflect functions specific to perennial plants.  相似文献   

12.
Enzymatic hydrolysis of hybrid poplar treated by ammonia recycle percolation (ARP) was studied applying cellulase enzyme supplemented with additional xylanase or pectinase. The effect of xylanase addition was much more significant than pectinase addition. Conversion of ARP‐treated hybrid poplar to ethanol was carried out by simultaneous saccharification and fermentation (SSF) and SS and cofermentation (SSCF). The maximum ethanol yield observed from the SSCF experiment was 78% of theoretical maximum based on the total carbohydrate (glucan + xylan). The same feedstock was also treated by soaking in aqueous ammonia (SAA), a batch pretreatment process with lower severity than ARP. The test results indicated that relatively high severity is required to attain acceptable level of digestibility of hybrid poplar. In order to lower the severity of the pretreatment, addition of H2O2 was attempted in the SAA. Addition of H2O2 significantly enhanced delignification of hybrid poplar due to its oxidative degradation of lignin. Several different H2O2 feeding schemes and different temperature profiles were attempted in operation of the SAA to investigate the effects of H2O2 on degradation of lignin and carbohydrates in hybrid poplar. More than 60% of lignin in hybrid poplar was removed with stepwise‐increase of temperature (60–120°C after 4h of reaction). Increase of carbohydrate degradation was also observed under this condition. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
Cloning of OSCs required for triterpene synthesis from legume species that are amenable to molecular genetics will provide tools to address the importance of triterpenes and their derivatives during normal plant growth and development and also in interactions with symbionts and pathogens. Here we report the cloning and characterization of a total of three triterpene synthases from the legume species Medicago truncatula and Lotus japonicus. These include a -amyrin synthase from M. truncatula (MtAMYI) and a mixed function triterpene synthase from Lotus japonicus (LjAMY2). A partial cDNA predicted to encode a -amyrin synthase (LjAMY1) was also isolated from L. japonicus. The expression patterns of MtAMY1, LjAMY1 and LjAMY2 and of additional triterpene synthases previously characterised from M. truncatula and pea differ in different plant tissues and during nodulation, suggesting that these enzymes may have distinct roles in plant physiology and development.  相似文献   

14.
This research investigates the fate and transport of methyl tert-butyl ether (MTBE) in phytoremediation, particularly the uptake and volatilization of MTBE in lab-scale hydroponic systems. The research reveals that MTBE was taken up by hybrid poplar cuttings and volatilized to the atmosphere. Volatilization of MTBE occurred through both stems and leaves. The concentration of MTBE in the transpiration stream declined exponentially with height, indicating that the uptake and volatilization along the stems are an important removal mechanism of MTBE in phytoremediation. Volatilization, via diffusion from the stems, has not been directly measured previously. No volatile MTBE metabolites were detected; however, mass balance closure and metabolite detection were not primary objectives of this study. The greatest amount of MTBE in plant biomass was associated with the woody stems from the previous year's growth, owing in part to the large biomass of stems. MTBE in the plant tissues appears to reach a steady state concentration and there does not appear to be an accumulation process that could lead to highly elevated concentrations relative to the groundwater source.  相似文献   

15.
The granule-bound starch-synthases from normal and waxy maize kernels have been solubilized, partially purified, and characterized. Two broad categories of starch synthases were revealed with representatives in the soluble phase and also on granules from both normal and waxy maize though the activity associated with granules from waxy was small. Data for native molecular weights, kinetic parameters, and immunological relatedness are used to demonstrate that the granule-bound isozymes from normal maize are different from the soluble enzymes. These distinct granule-bound enzymes are missing in waxy maize granules and a further novel form of starch synthase is revealed. These findings are discussed in relation to the type of starch produced in tissue affected by the waxy mutation.  相似文献   

16.
Galactinol, 1-O-(alpha-D-galactopyranosyl)-myo-inositol, was produced from sucrose as a starting material. UDP-Glc was prepared with sucrose and UDP using sucrose synthase partially purified from sweet potato roots. Then, the UDP-Glc was converted to UDP-Gal using yeast UDP-Gal 4-epimerase from a commercial source. Finally, galactinol was produced from the UDP-Gal and myo-inositol using galactinol synthase partially purified from cucumber leaves. The product was identified as galactinol by the retention times of HPLC, alpha-galactosidase digestion, and NMR spectrometry.  相似文献   

17.
Plant Cell, Tissue and Organ Culture (PCTOC) - Tetraploid poplar plants were induced by colchicine from tissue-cultured shoots; the induction efficiency varied with colchicine concentration....  相似文献   

18.
19.
U. Winkler  H. Stabenau 《Planta》1995,195(3):403-407
Peroxisomes were isolated by gradient centrifugation from two different diatoms: Nitzschia laevis (subgroup of Pennales) and Thalassiosira fluviatilis (subgroup of Centrales). In neither of these organelles could catalase or any H2O2-forming oxidase be demonstrated. The glycolate-oxidizing enzyme present in the peroxisomes is a dehydrogenase capable of oxidizing l-lactate as well. The peroxisomes also contain the glyoxysomal markers isocitrate lyase and malate synthase. However, enzymes of the fatty-acid -oxidation pathway are located exclusively in the mitochondria. The mitochondria additionally possess glutamate-glyoxylate aminotransferase and a glycolate dehydrogenase which differs from the peroxisomal glycolate dehydrogenase since it preferably utilizes d-lactate as an alternative substrate. Hydroxypyruvate reductase and glyoxylate carboligase were not found in the cells of either diatom. By culturing Nitzschia laevis it could be demonstrated that decreasing the CO2 concentration in the aeration mixture from 2% to 0.03% and increasing the irradiance from 40 to 250 mol quanta · m–2 · s–1 resulted in an increase of all peroxisomal enzyme activities. In addition, enzyme activities of the -oxidation pathway were increased. However, mitochondrial glycolate dehydrogenase and aminotransferase did not alter their activities under these conditions. Summarizing all results, it is postulated that there are two different pathways for the metabolism of glycolate in the diatoms.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号