首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1994,125(6):1275-1287
The transplantation of cultured myoblasts into mature skeletal muscle is the basis for a new therapeutic approach to muscle and non-muscle diseases: myoblast-mediated gene therapy. The success of myoblast transplantation for correction of intrinsic muscle defects depends on the fusion of implanted cells with host myofibers. Previous studies in mice have been problematic because they have involved transplantation of established myogenic cell lines or primary muscle cultures. Both of these cell populations have disadvantages: myogenic cell lines are tumorigenic, and primary cultures contain a substantial percentage of non-myogenic cells which will not fuse to host fibers. Furthermore, for both cell populations, immune suppression of the host has been necessary for long-term retention of transplanted cells. To overcome these difficulties, we developed novel culture conditions that permit the purification of mouse myoblasts from primary cultures. Both enriched and clonal populations of primary myoblasts were characterized in assays of cell proliferation and differentiation. Primary myoblasts were dependent on added bFGF for growth and retained the ability to differentiate even after 30 population doublings. The fate of the pure myoblast populations after transplantation was monitored by labeling the cells with the marker enzyme beta-galactosidase (beta-gal) using retroviral mediated gene transfer. Within five days of transplantation into muscle of mature mice, primary myoblasts had fused with host muscle cells to form hybrid myofibers. To examine the immunobiology of primary myoblasts, we compared transplanted cells in syngeneic and allogeneic hosts. Even without immune suppression, the hybrid fibers persisted with continued beta-gal expression up to six months after myoblast transplantation in syngeneic hosts. In allogeneic hosts, the implanted cells were completely eliminated within three weeks. To assess tumorigenicity, primary myoblasts and myoblasts from the C2 myogenic cell line were transplanted into immunodeficient mice. Only C2 myoblasts formed tumors. The ease of isolation, growth, and transfection of primary mouse myoblasts under the conditions described here expand the opportunities to study muscle cell growth and differentiation using myoblasts from normal as well as mutant strains of mice. The properties of these cells after transplantation--the stability of resulting hybrid myofibers without immune suppression, the persistence of transgene expression, and the lack of tumorigenicity-- suggest that studies of cell-mediated gene therapy using primary myoblasts can now be broadly applied to mouse models of human muscle and non-muscle diseases.  相似文献   

2.
During ex vivo myoblast differentiation, a pool of quiescent mononucleated myoblasts, reserve cells, arise alongside myotubes. Insulin/insulin-like growth factor (IGF) and PKB/Akt-dependent phosphorylation activates skeletal muscle differentiation and hypertrophy. We have investigated the role of glycogen synthase kinase 3 (GSK-3) inhibition by protein kinase B (PKB)/Akt and Wnt/beta-catenin pathways in reserve cell activation during myoblast differentiation and myotube hypertrophy. Inhibition of GSK-3 by LiCl or SB216763, restored insulin-dependent differentiation of C2ind myoblasts in low serum, and cooperated with insulin in serum-free medium to induce MyoD and myogenin expression in C2ind myoblasts, quiescent C2 or primary human reserve cells. We show that LiCl treatment induced nuclear accumulation of beta-catenin in C2 myoblasts, thus mimicking activation of canonical Wnt signaling. Similarly to the effect of GSK-3 inhibitors with insulin, coculturing C2 reserve cells with Wnt1-expressing fibroblasts enhanced insulin-stimulated induction of MyoD and myogenin in reserve cells. A similar cooperative effect of LiCl or Wnt1 with insulin was observed during late ex vivo differentiation and promoted increased size and fusion of myotubes. We show that this synergistic effect on myotube hypertrophy involved an increased fusion of reserve cells into preexisting myotubes. These data reveal insulin and Wnt/beta-catenin pathways cooperate in muscle cell differentiation through activation and recruitment of satellite cell-like reserve myoblasts.  相似文献   

3.
The limitation in successfully acquiring large populations of stem cell has impeded their application. A new method based on the dedifferentiation of adult somatic cells to generate induced multipotent stem cells would allow us to obtain a large amount of autologous stem cells for regenerative medicine. The current work was proposed to induce a sub‐population of cells with characteristics of muscle stem cells from myoblasts through conditional treatment of transforming growth factor (TGF)‐β1. Our results show that a lower concentration of TGF‐β1 is able to promote C2C12 myoblasts to express stem cell markers as well as to repress myogenic proteins, which involves a mechanism of dedifferentiation. Moreover, TGF‐β1 treatment promoted the proliferation‐arrested C2C12 myoblasts to re‐enter the S‐phase. We also investigated the multi‐differentiation potentials of the dedifferentiated cells. TGF‐β1 pre‐treated C2C12 myoblasts were implanted into mice to repair dystrophic skeletal muscle or injured bone. In addition to the C2C12 myoblasts, similar effects of TGF‐β1 were also observed in the primary myoblasts of mice. Our results suggest that TGF‐β1 is effective as a molecular trigger for the dedifferentiation of skeletal muscle myoblasts and could be used to generate a large pool of progenitor cells that collectively behave as multipotent stem cell‐like cells for regenerative medicine applications.  相似文献   

4.
Satellite cells are tissue-specific stem cells critical for skeletal muscle growth and regeneration. Upon exposure to appropriate stimuli, satellite cells produce progeny myoblasts. Heterogeneity within a population of myoblasts ensures that a subset of myoblasts readily differentiate to form myotubes, whereas other myoblasts remain undifferentiated and thus available for future muscle growth. The mechanisms that contribute to this heterogeneity in myoblasts are largely unknown. We show that satellite cells are Sca-1(neg) but give rise to myoblasts that are heterogeneous for sca-1 expression. The majority of myoblasts are sca-1(neg), rapidly divide, and are capable of undergoing myogenic differentiation to form myotubes. In contrast, a minority population is sca-1(pos), divides slower, and does not readily form myotubes. Sca-1 expression is not static but rather dynamically modulated by the microenvironment. Gain-of-function and loss-of-function experiments demonstrate that sca-1 has a functional role in regulating proliferation and differentiation of myoblasts. Myofiber size of sca-1 null muscles is altered in an age-dependent manner, with increased size observed in younger mice and decreased size in older mice. These studies reveal a novel system that reversibly modulates the myogenic behavior of myoblasts. These studies provide evidence that, rather than being a fixed property, myoblast heterogeneity can be modulated by the microenvironment.  相似文献   

5.
These studies describe a liquid suspension culture system for normal myeloid cells derived from human foetal liver. A simple one-step fractionation procedure was employed to obtain a cell population capable of expanding into all stages of myeloid differentiation, including committed myeloid progenitor cells (GM-CFC). Cell proliferation in these cultures resulted in the maintenance of early myeloid populations for up to a month. In order to extend myeloid cell maintenance, a specific factor in the form of media conditioned by human endothelial cells (endo C.M.) was used. Addition of endo C.M. to foetal liver cultures resulted in increased myeloid proliferation coupled to extensive myeloid differentiation. Clonally derived foetal liver culture cells proliferated for up to 2 months in the presence of endo C.M. before maturing into macrophages. These results show that endo C.M. exert an extensive proliferative effect on early myeloid cells as well as inducing their differentiation. The large quantity of cells in early stages of myeloid differentiation provided by foetal liver cultures may be useful for biochemical and molecular biology studies of myelopoiesis. In addition, these cultures are a potential source from which to derive normal myeloid lines. The separation of the potent proliferative activity present in endo C.M. may yield an effector which maintains human myeloid cell proliferation.  相似文献   

6.
We described the ex vivo production of mature and functional human smooth muscle cells (SMCs) derived from skeletal myoblasts. Initially, myoblasts expressed all myogenic cell-related markers such as Myf5, MyoD and Myogenin and differentiate into myotubes. After culture in a medium containing vascular endothelial growth factor (VEGF), these cells were shown to have adopted a differentiated SMC identity as demonstrated by alphaSMA, SM22alpha, calponin and smooth muscle-myosin heavy chain expression. Moreover, the cells cultured in the presence of VEGF did not express MyoD anymore and were unable to fuse in multinucleated myotubes. We demonstrated that myoblasts-derived SMCs (MDSMCs) interacted with endothelial cells to form, in vitro, a capillary-like network in three-dimensional collagen culture and, in vivo, a functional vascular structure in a Matrigel implant in nonobese diabetic-severe combined immunodeficient mice. Based on the easily available tissue source and their differentiation into functional SMCs, these data argue that skeletal myoblasts might represent an important tool for SMCs-based cell therapy.  相似文献   

7.
8.
Selected strains of adult bovines and those which either have high muscle growth capacity or are double-muscled present particular characteristics of muscle fibres and collagen at slaughter that favour meat tenderness. For double-muscled bovines, it has been shown that these characteristics originated during foetal life. However, no studies have been done to determine the origin of muscle growth superiority in bovine with high muscle growth capacity compared to those with a low muscle growth capacity. Therefore, the objective of this study was to examine the proliferation and differentiation phases of myoblasts in primary culture taken from high and low muscle growth capacity foetuses at 110 days post-conception. These cultures were analysed on 1, 2, 3, 4, 6, 8, 10 days of culture. The proliferation phase was monitored by appropriate marker antibodies. The differentiation was studied by immunocytochemistry with specific antibodies for foetal, I, II (IIa and IIb), I and IIb, I and IIa myosin heavy chains (MHCs) and connectin respectively, and by immunoblotting with desmin antibody. A higher proliferation, a lower fusion and a delayed differentiation of the late markers namely MHCs fast (IIa and IIb) and connectin were shown in high muscle growth capacity foetuses compared to low capacity ones. The results indicate that the muscle growth superiority of high muscle growth capacity bovines seems, therefore, to have a similar foetal origin to that of double-muscled ones.  相似文献   

9.
10.
11.
12.
In this study, we have investigated the effects of insulin-like growth factor-I (IGF-I) on cellular responses of primary human skeletal muscle cells and mouse C2C12 myoblasts. In human muscle, IGF-I stimulated proliferation and fusion of the cells and the expression of the differentiation marker desmin. These effects were completely inhibited by Rottlerin, the inhibitor of the protein kinase C (PKC)delta, but were not affected by the inhibition of the mitogen-activated protein kinase (MAPK) or the phosphatidylinositide 3-kinase (PI-3K) pathways. Furthermore, IGF-I initiated the selective translocation of PKCdelta to the nucleus. In C2C12 myoblasts, the growth-promoting effects of IGF-I were abrogated by inhibition of PKCdelta, but not by the inhibition of the PI-3K system. However, in contrast to the human data, the MAPK inhibitor PD098059 partially (yet significantly) also inhibited the action of IGF-I and, furthermore, IGF-I induced phosphorylation of the MAPK Erk-1/2. In addition, overexpression of constitutively active form of PKCdelta in C2C12 cells fully mimicked, whereas overexpression of kinase inactive mutant of the isoform prevented the action of IGF-I. Finally, the inhibition of PKCdelta suspended the IGF-I-induced phosphorylation of Erk-1/2 and, moreover, the inhibition of the MAPK pathway partially (yet significantly) inhibited the accelerated growth of C2C12 cells overexpressing PKCdelta. Taken together, these results demonstrate a novel, central and exclusive involvement of PKCdelta in mediating the action of IGF-I on human skeletal muscle cells, with an additional yet PKCdelta-dependent contribution of the MAPK pathway on C2C12 myoblasts.  相似文献   

13.
Adult human skeletal muscle-derived cells (HuSkMC) propagated in vitro are under investigation as a cell-based therapy for the treatment of myocardial infarction. We have characterized HuSkMC with respect to cell identity and state of differentiation as a prerequisite to their clinical use. Flow cytometric analysis of propagated HuSkMC revealed a population of cells that expressed the myoblast markers CD56 and desmin. The presence of myoblasts in these cultures was further confirmed by their capacity to form myotubes and increase creatine kinase activity when cultured in low serum conditions. The non-myoblast fraction of these propagated cells expressed TE7, a marker associated with the fibroblast phenotype. Spontaneous differentiation of myoblasts occurred during serial propagation of HuSkMC, as judged by myotube formation, thereby reducing the myoblast representative fraction with continued cell expansion. We examined transforming growth factor beta2 (TGF-beta2) for its utility in controlling this spontaneous differentiation of adult human myoblasts in vitro. Propagation of HuSkMC in the presence of 1 ng/ml TGF-beta2 for 5 days decreased desmin expression within the myoblast population and caused a parallel reduction of creatine kinase activity. CD56 expression was unaffected, indicating a differential regulation of these myoblast markers. The reduction in desmin expression and creatine kinase activity was, however, reversible upon the removal of TGF-beta. These data collectively indicate that TGF-beta2 restrained differentiation of adult human skeletal myoblasts during propagation without causing irreversible loss of the myoblast phenotype, demonstrating the potential utility of using TGF-beta2 during cultivation and expansion of HuSkMC intended for therapeutic implantation.  相似文献   

14.
Myofibroblasts are one of the key cellular components involved in fibrosis of skeletal muscle as well as in other tissues. Transforming growth factor-beta1 (TGF-beta1) stimulates differentiation of mesenchymal cells into myofibroblasts, but little is known about the regulatory mechanisms of myofibroblastic differentiation. Since Notch2 was shown to be downregulated in TGF-beta1-induced non-muscle fibrogenic tissue, we investigated whether Notch2 also has a distinctive role in myofibroblastic differentiation of myogenic cells induced by TGF-beta1. TGF-beta1 treatment of C2C12 myoblasts led to expression of myofibroblastic marker alpha-smooth muscle actin (alpha-SMA) and collagen I with concomitant downregulation of Notch2 expression. Overexpression of active Notch2 inhibited TGF-beta1-induced expression of alpha-SMA and collagen I. Interestingly, transient knockdown of Notch2 by siRNA in C2C12 myoblasts and primary cultured muscle-derived progenitor cells resulted in differentiation into myofibroblastic cells expressing alpha-SMA and collagen I without TGF-beta1 treatment. Furthermore, we found Notch3 was counter-regulated by Notch2 in C2C12 cells. These findings suggest that Notch2 is inhibiting differentiation of myoblasts into myofibroblasts with downregulation of Notch3 expression.  相似文献   

15.
The changes in subcellular localization of metallothionein during differentiation were studied in two myoblast cell lines, L6 and H9C2. Addition of insulin like growth factor-I or lowering foetal bovine serum to 1% can induce differentiation of myoblasts to myotubes. Metallothionein and zinc were localized mainly in the cytoplasm in myoblasts but were translocated into the nucleus of newly formed myotubes during early differentiation. In fully differentiated myotubes, metallothionein content was decreased with a cytoplasmic localization. Addition of an inhibitor of mitogen-activated protein kinase, PD 98059, did not affect differentiation but blocked nuclear translocation of metallothionein. LY 294092, an inhibitor of PI3 kinase, and rapamycin, an inhibitor of p70S6 serine/threonine kinase, abolished insulin-like growth factor-I induced differentiation of myoblasts, retained metallothionein in the cytoplasm, and decreased metallothionein content. These results demonstrate that the cytoplasmic-nuclear translocation of metallothionein occurs during the early stage of differentiation of myoblasts to myotubes and can be blocked by inhibition of certain signal transduction pathways. The transient nuclear localization of metallothionein and zinc may be related to a high requirement for zinc for metabolic activities during the early stage of differentiation.  相似文献   

16.
Skeletal muscle contractile activity has been implicated in many aspects of muscle cell differentiation and maturation. Much of the research in this area has depended upon costly and labor-intensive cultures of isolated primary muscle cells because widely available immortalized muscle cell lines often do not display a high level of either spontaneous or stimulated contractile activity. We sought to develop conditionally-immortalized skeletal muscle cell lines that would provide a source of myofibers that exhibit robust spontaneous contractile activity similar to primary muscle cultures. Using a tetracycline-regulated retroviral vector expressing a temperature-sensitive T-antigen to infect primary myoblasts, we isolated individual clonal muscle precursor cell lines that have characteristics of activated satellite cells during growth and rapidly differentiate into mature myotubes with spontaneous contractile activity after culture in non-transformation-permissive conditions. Comparison of these cell lines (known as rat myoblast-like tetracycline (RMT) cell lines) to primary cell cultures revealed that they share a wide variety of morphological, physiological, and biochemical characteristics. Most importantly, the time-course and extent of activity-dependent gene regulation observed in primary cell culture for all genes tested, including subunits of the nicotinic acetylcholine receptor (nAChR), muscle specific kinase (MuSK), and myogenin, is reproduced in RMT lines. These immortalized cell lines are a useful alternative to primary cultures for studying muscle differentiation and molecular and physiological aspects of electrical activity in muscle fibers.  相似文献   

17.
Many reports have shown that tongue striated muscles have several unique characteristics not found in other skeletal muscles such as limb and trunk. Several peptide growth factors are reported to play important roles in skeletal myogenesis. In this article, the roles of insulin-like growth factors (IGF), hepatocyte growth factor (HGF) and transforming growth factor (TGF)-alpha in mouse tongue myogenesis were studied using an organ culture system of the mandible or tongue obtained from mouse embryos. It was found that IGF-I promotes the differentiation of tongue myoblasts. HGF plays an essential role in the migration and proliferation of tongue myogenic cells, and inhibits the differentiation of tongue myoblasts. TGF-alpha does not play an essential role in the proliferation of tongue myogenic cells, but does promote the early differentiation of tongue myoblasts. The role of IGF-I in the differentiation of tongue myoblasts, and that of HGF in the migration, proliferation and differentiation of tongue myogenic cells appear to be almost identical to their roles in the myogenesis of limb and cultured myogenic cell lines. However, the role of TGF-alpha in the proliferation and differentiation of tongue myogenic cells appears to be different from its role in the myogenesis of limb and cultured myogenic cell lines such as C2 and L6.  相似文献   

18.
During muscle development, precursor cells fuse to form myofibers. Following injury in adult muscle, quiescent satellite cells become activated to regenerate muscle in a fashion similar to fetal development. Recent studies indicate that murine skeletal myoblasts can differentiate along multiple cell lineages including the osteoblastic pathway. However, little is known about the multipotency of human myogenic cells. Here, we isolate myogenic precursor cells from human fetal and adult muscle by sorting for the laminin-binding alpha7 integrin and demonstrate their differentiation potential and alteration in adhesive behavior. The alpha7-positive human fetal progenitors were efficient at forming myotubes and a majority expressed known muscle markers including M-cadherin and c-Met, but were heterogeneous for desmin and MyoD expression. To test their pluripotent differentiation potential, enriched populations of alpha7-positive fetal cells were subjected to inductive protocols. Although the myoblasts appeared committed to a muscle lineage, they could be converted to differentiate along the osteoblastic pathway in the presence of BMP-2. Interestingly, osteogenic cells showed altered adhesion and migratory activity that reflected growth factor-induced changes in integrin expression. These results indicate that alpha7-expressing fetal myoblasts are capable of differentiation to osteoblast lineage with a coordinated switch in integrin profiles and may represent a mechanism that promotes homing and recruitment of myogenic stem cells for tissue repair and remodeling.  相似文献   

19.
Interleukin-15 (IL-15) has been shown to have anabolic effects on skeletal muscle in rodent studies conducted in vitro and in vivo. The mechanism of IL-15 action on muscle appears to be distinct from that of the well-characterized muscle anabolic factor insulin-like growth factor-I (IGF-I). IL-15 action has not been investigated in a human culture system nor in detail in primary skeletal myogenic cells. The purpose of this study was to compare the effects of IL-15 and IGF-I in primary human skeletal myogenic cells. Accretion of a major myofibrillar protein, myosin heavy chain (MHC), was used as a measure of muscle anabolism. We found that both growth factors induced increases in MHC accretion in primary human skeletal myogenic cultures; however, IL-15 and IGF-I actions were temporally distinct. IL-15 was more effective at stimulating MHC accretion when added to cultures after differentiation of myoblasts had occurred. In contrast, IGF-I was more effective at stimulating MHC accretion when added to cultures prior to differentiation of myoblasts. These results using a human system support recent findings from rodent models which indicate that the primary mode of IGF-I action on skeletal muscle anabolism is through stimulation of myogenic precursor cells, whereas the primary target of IL-15 action is the differentiated muscle fiber. Further, since clinical and experimental studies have shown IGF-I is not effective in preventing skeletal muscle wasting, the distinct mode of action of IL-15 suggests it may be of potential usefulness in the treatment of muscle wasting disorders.  相似文献   

20.
Three populations of myoblasts, embryonic, foetal and adult, appear sequentially during myogenesis. The present study uses retroviruses to mark myoblasts clones in vivo from these populations. Myoblasts labelled at E15 (embryonic) contributed to primary fibres only. The majority of marked primary fibres were slow but a small number of clones contained marked primaries which were no longer slow at E19. Myoblasts labelled at E17 (foetal) fused with both primary and secondary fibres and most clones contained both fast and slow fibres. Similarly, adult myoblasts marked at P0 fused with all fibre types. These results indicate that embryonic myoblasts are restricted to producing only primary fibres which are initially slow but which can convert to being fast. Clones of foetal and adult myoblasts fuse with both primary and secondary fibres which may be either fast or slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号