首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding the role of electrostatics in protein stability requires knowledge of these interactions in both the folded and unfolded states. Electrostatic interactions can be probed experimentally by characterizing ionization equilibria of titrating groups, parameterized as pKa values. However, pKa values of the unfolded state are rarely accessible under native conditions, where the unfolded state has a very low population. Here, we report pKa values under nondenaturing conditions for two unfolded fragments of the protein G B1 domain that mimic the unfolded state of the intact protein. pKa values were determined for carboxyl groups by monitoring their pH-dependent 13C chemical shifts. Monte Carlo simulations using a Gaussian chain model provide corrections for changes in electrostatic interactions that arise from fragmentation of the protein. Most pKa values for the unfolded state agree well with model values, but some residues show significant perturbations that can be rationalized by local electrostatic interactions. The pH-dependent stability was calculated from the experimental pKa values of the folded and unfolded states and compared to experimental stability data. The use of experimental pKa values for the unfolded state results in significantly improved agreement with experimental data, as compared to calculations based on model data alone.  相似文献   

2.
Sac7d and Sso7d are homologous, hyperthermophile proteins with a high density of charged surface residues and potential ion pairs. To determine the relative importance of specific amino acid side-chains in defining the stability and function of these Archaeal chromatin proteins, pK(a) values were measured for the acidic residues in both proteins using (13)C NMR chemical shifts. The stability of Sso7d enabled titrations to pH 1 under low-salt conditions. Two aspartate residues in Sso7d (D16 and D35) and a single glutamate residue (G54) showed significantly perturbed pK(a) values in low salt, indicating that the observed pH-dependence of stability was primarily due to these three residues. The pH-dependence of backbone amide NMR resonances demonstrated that perturbation of all three pK(a) values was primarily the result of side-chain to backbone amide hydrogen bonds. Few of the significantly perturbed acidic pK(a) values in Sac7d and Sso7d could be attributed to primarily ion pair or electrostatic interactions. A smaller perturbation of E48 (E47 in Sac7d) was ascribed to an ion pair interaction that may be important in defining the DNA binding surface. The small number (three) of significantly altered pK(a) values was in good agreement with a linkage analysis of the temperature, pH, and salt-dependence of folding. The linkage of the ionization of two or more side-chains to protein folding led to apparent cooperativity in the pH-dependence of folding, although each group titrated independently with a Hill coefficient near unity. These results demonstrate that the acid pH-dependence of protein stability in these hyperthermophile proteins is due to independent titration of acidic residues with pK(a) values perturbed primarily by hydrogen bonding of the side-chain to the backbone. This work demonstrates the need for caution in using structural data alone to argue the importance of ion pairs in stabilizing hyperthermophile proteins.  相似文献   

3.
Epsin and AP180 are essential components of the endocytotic machinery, which controls internalization of protein receptors and other macromolecules at the cell surface. Epsin and AP180 are recruited to the plasma membrane by their structurally and functionally related N-terminal ENTH and ANTH domains that specifically recognize PtdIns(4,5)P2. Here, we show that membrane anchoring of the ENTH and ANTH domains is regulated by the acidic environment. Lowering the pH enhances PtdIns(4,5)P2 affinity of the ENTH and ANTH domains reinforcing their association with lipid vesicles and monolayers. The pH dependency is due to the conserved histidine residues of the ENTH and ANTH domains, protonation of which is necessary for the strong PtdIns(4,5)P2 recognition, as revealed by liposome binding, surface plasmon resonance, NMR, monolayer surface tension and mutagenesis experiments. The pH sensitivity of the ENTH and ANTH domains is reminiscent to the pH dependency of the FYVE domain suggesting a common regulatory mechanism of membrane anchoring by a subset of the PI-binding domains.  相似文献   

4.
A number of computational and experimental studies have identified intramolecular communication "pathways" or "networks" important for transmitting allostery. Here, we have used mutagenesis and NMR relaxation methods to investigate the scope and nature of the communication networks found in the second post-synaptic density-95/discs large/zonula occludens-1 (PDZ) domain of the human protein tyrosine phosphatase 1E protein (hPTP1E) (PDZ2). It was found that most mutations do not have a significant energetic contribution to peptide ligand binding. Three mutants that showed significant changes in binding also displayed context-dependent dynamic effects. Both a mutation at a partially exposed site (H71Y) and a buried core position (I35V) had a limited response in side-chain (2)H-based dynamics when compared to wild-type PDZ2. In contrast, a change at a second core position (I20F) that had previously been shown to be part of an energetic and dynamic network, resulted in extensive changes in side-chain dynamics. This response is reminiscent to that seen previously upon peptide ligand binding. These results shed light on the nature of the PDZ2 dynamic network and suggest that position 20 in PDZ2 acts as a "hub" that is energetically and dynamically critical for transmitting changes in dynamics throughout the PDZ domain.  相似文献   

5.
In the N2 domain of the gene-3-protein of phage fd, two consecutive β-strands are connected by a mobile loop of seven residues (157-163). The stability of this loop is low, and the Asp160-Pro161 bond at its tip shows conformational heterogeneity with 90% being in the cis and 10% in the trans form. The refolding kinetics of N2 are complex because the molecules with cis or trans isomers at Pro161 both fold to native-like conformations, albeit with different rates. We employed consensus design to shorten the seven-residue irregular loop around Pro161 to a four-residue type I′ turn without a proline. This increased the conformational stability of N2 by almost 10 kJ mol− 1 and abolished the complexity of the folding kinetics. Turn sequences obtained from in vitro selections for increased stability strongly resembled those derived from the consensus design. Two other type I′ turns of N2 could also be stabilized by consensus design. For all three turns, the gain in stability originates from an increase in the rate of refolding. The turns form native-like structures early during refolding and thus stabilize the folding transition state. The crystal structure of the variant with all three stabilized turns confirms that the 157-163 loop was in fact shortened to a type I′ turn and that the other turns maintained their type I′ conformation after sequence optimization.  相似文献   

6.
Proteins of the ASPP family bind to p53 and regulate p53-mediated apoptosis. Two family members, ASPP1 and ASPP2, have pro-apoptotic functions while iASPP shows anti-apoptotic responses. However, both the mechanism of enhancement/repression of apoptosis and the molecular basis for their different responses remain unknown. To address the role of the N-termini of pro-apoptotic ASPP proteins, we solved the solution structure of N-ASPP2 (1-83) by NMR spectroscopy. The structure of this domain reveals a beta-Grasp ubiquitin-like fold. Our findings suggest a possible role for the N-termini of ASPP proteins in binding to other proteins in the apoptotic response network and thus mediating their selective pro-apoptotic function.  相似文献   

7.
Chromodomains are methylated histone binding modules that have been widely studied. Interestingly, some chromodomains are reported to bind to RNA and/or DNA, although the molecular basis of their RNA/DNA interactions has not been solved. Here we propose a novel binding mode for chromodomain-RNA interactions. Essential Sas-related acetyltransferase 1 (Esa1) contains a presumed chromodomain in addition to a histone acetyltransferase domain. We initially determined the solution structure of the Esa1 presumed chromodomain and showed it to consist of a well-folded structure containing a five-stranded β-barrel similar to the tudor domain rather than the canonical chromodomain. Furthermore, the domain showed no RNA/DNA binding ability. Because the N-terminus of the protein forms a helical turn, we prepared an N-terminally extended construct, which we surprisingly found to bind to poly(U) and to be critical for in vivo function. This extended protein contains an additional β-sheet that acts as a knot for the tudor domain and binds to oligo(U) and oligo(C) with greater affinity compared with other oligo-RNAs and DNAs examined thus far. The knot does not cause a global change in the core structure but induces a well-defined loop in the tudor domain itself, which is responsible for RNA binding. We made 47 point mutants in an esa1 mutant gene in yeast in which amino acids of the Esa1 knotted tudor domain were substituted to alanine residues and their functional abilities were examined. Interestingly, the knotted tudor domain mutations that were lethal to the yeast lost poly(U) binding ability. Amino acids that are related to RNA interaction sites, as revealed by both NMR and affinity binding experiments, are found to be important in vivo. These findings are the first demonstration of how the novel structure of the knotted tudor domain impacts on RNA binding and how this influences in vivo function.  相似文献   

8.
tRNA molecules contain 93 chemically unique nucleotide base modifications that expand the chemical and biophysical diversity of RNA and contribute to the overall fitness of the cell. Nucleotide modifications of tRNA confer fidelity and efficiency to translation and are important in tRNA-dependent RNA-mediated regulatory processes. The three-dimensional structure of the anticodon is crucial to tRNA-mRNA specificity, and the diverse modifications of nucleotide bases in the anticodon region modulate this specificity. We have determined the solution structures and thermodynamic properties of Bacillus subtilis tRNATyr anticodon arms containing the natural base modifications N6-dimethylallyl adenine (i6A37) and pseudouridine (ψ39). UV melting and differential scanning calorimetry indicate that the modifications stabilize the stem and may enhance base stacking in the loop. The i6A37 modification disrupts the hydrogen bond network of the unmodified anticodon loop including a C32-A38+ base pair and an A37-U33 base-base interaction. Although the i6A37 modification increases the dynamic nature of the loop nucleotides, metal ion coordination reestablishes conformational homogeneity. Interestingly, the i6A37 modification and Mg2+ are sufficient to promote the U-turn fold of the anticodon loop of Escherichia coli tRNAPhe, but these elements do not result in this signature feature of the anticodon loop in tRNATyr.  相似文献   

9.
10.
One particularly interesting single nucleotide polymorphism (SNP), rs6235 (encoding an S690T substitution), in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene has been widely associated with obesity in several European cohorts. The present study was intended to investigate the association between the PCSK1 rs6235 SNP and the prevalence of overweight or obesity, or obesity-related metabolic traits in a Taiwanese population. A total of 964 Taiwanese subjects with general health examinations were analyzed. Our data revealed no association of PCSK1 rs6235 with the risk of obesity or overweight in the complete subjects. However, the PCSK1 rs6235 SNP exhibited a significant association with overweight among the male subjects (P = 0.03), but not among the female subjects. Furthermore, the carriers of GG variant had a significantly higher waist circumference than those with the CC variant (82.5 ± 11.5 vs. 81.2 ± 10.2 cm; P = 0.01) and those with the CG variant (82.5 ± 11.5 vs. 81.4 ± 10.4 cm; P = 0.021). In addition, the carriers of GG variant had a higher diastolic blood pressure than those with the CC variant (81.9 ± 14.2 vs. 80.3 ± 12.9 mm Hg; P = 0.023). Our study indicates that the PCSK1 rs6235 SNP may contribute to the risk of overweight in men and predict obesity-related metabolic traits such as waist circumference and diastolic blood pressure in Taiwanese subjects.  相似文献   

11.
The structure of the capsular polysaccharide from Streptococcus pneumoniae Type 33F was originally determined by a combination of chemical methods and limited use of NMR spectroscopy [Can. J. Biochem. Cell Biol.1984, 62, 666-677]. We report full 1H and 13C assignments and confirm the structure of the saccharide repeat unit, but find that the site of O-acetylation is O-2 of the -->5)-beta-D-Galf, rather than the -->3)-beta-D-Galf residue. We find that a slightly higher percentage of the repeat units are O-acetylated: [carbohydrate: see text].  相似文献   

12.
Structural analysis of MRP1-NBD1 revealed that the Walker A S685 forms hydrogen-bond with the Walker B D792 and interacts with magnesium and the β-phosphate of the bound ATP. We have found that substitution of the D792 with leucine resulted in misfolding of the protein. In this report we tested whether substitution of the S685 with residues that prevent formation of this hydrogen-bond would also cause misfolding. Indeed, substitution of the S685 with residues potentially preventing formation of this hydrogen-bond resulted in misfolding of the protein. In addition, some substitutions that might form hydrogen-bond with D792 also yielded immature protein. All these mutants are temperature-sensitive variants. However, these complex-glycosylated mature mutants prepared from the cells grown at 27 °C still significantly affect ATP binding and ATP-dependent solute transport. In contrast, substitution of the S685 with threonine yielded complex-glycosylated mature protein that is more active than the wild-type MRP1, indicating that the interaction between the hydroxyl group of 685 residue and the carboxyl group of D792 plays a crucial role for the protein folding and the interactions of the hydroxyl group at 685 with magnesium and the β-phosphate of the bound ATP play an important role for ATP-binding and ATP-dependent solute transport.  相似文献   

13.
The intermediate chain of dynein forms a tight subcomplex with dimeric light chains LC8 and Tctex-1, and together they constitute the cargo attachment complex. There is considerable interest in identifying the role of these light chains in the assembly of the two copies of the intermediate chain. The N-terminal domain of the intermediate chain, IC1-289, contains the binding sites for the light chains, and is a highly disordered monomer but gains helical structure upon binding to light chains LC8 and Tctex-1. To provide insights into the structural and dynamic changes that occur in the intermediate chain upon light chains binding, we have used NMR spectroscopy to compare the properties of two distinct sub-domains of IC1-289: IC84-143 which is the light chains binding domain, and IC198-237, which contains a predicted coiled coil necessary for the increase in ordered structure upon light chain binding. Neither construct has stable secondary structure when probed by circular dichroism and amide chemical shift dispersion. Specific residues of IC84-143 involved in binding to the light chains were identified by their increase in resonance line broadening and the corresponding large intensity reduction in 1H-15N HSQC spectra. Interestingly, IC84-143 shows no sign of structure formation after binding to either LC8 or Tctex-1 or to both. IC198-237, on the other hand, contains a population of a nascent helix at low temperature as identified by heteronuclear NMR relaxation measurements, secondary chemical shifts, and sequential amide-amide connectivities. These data are consistent with a model for light chain binding coupled to intermediate chain dimerization through forming a coiled coil distant from the binding site.  相似文献   

14.
The B-box type 2 domain is a prominent feature of a large and growing family of RING, B-box, coiled-coil (RBCC) domain-containing proteins and is also present in more than 1500 additional proteins. Most proteins usually contain a single B-box2 domain, although some proteins contain tandem domains consisting of both type 1 and type 2 B-boxes, which actually share little sequence similarity. Recently, we determined the solution structure of B-box1 from MID1, a putative E3 ubiquitin ligase that is mutated in X-linked Opitz G/BBB syndrome, and showed that it adopted a betabetaalpha RING-like fold. Here, we report the tertiary structure of the B-box2 (CHC(D/C)C(2)H(2)) domain from MID1 using multidimensional NMR spectroscopy. This MID1 B-box2 domain consists of a short alpha-helix and a structured loop with two short anti-parallel beta-strands and adopts a tertiary structure similar to the B-box1 and RING structures, even though there is minimal primary sequence similarity between these domains. By mutagenesis, ESI-FTICR and ICP mass spectrometry, we show that the B-box2 domain coordinates two zinc atoms with a 'cross-brace' pattern: one by Cys175, His178, Cys195 and Cys198 and the other by Cys187, Asp190, His204, and His207. Interestingly, this is the first case that an aspartic acid is involved in zinc atom coordination in a zinc-finger domain, although aspartic acid has been shown to coordinate non-catalytic zinc in matrix metalloproteinases. In addition, the finding of a Cys195Phe substitution identified in a patient with X-linked Opitz GBBB syndrome supports the importance of proper zinc coordination for the function of the MID1 B-box2 domain. Notably, however, our structure differs from the only other published B-box2 structure, that from XNF7, which was shown to coordinate one zinc atom. Finally, the similarity in tertiary structures of the B-box2, B-box1 and RING domains suggests these domains have evolved from a common ancestor.  相似文献   

15.
Le Lan C  Neumann JM  Jamin N 《FEBS letters》2006,580(22):5301-5305
Circular dichroism (CD) and NMR spectroscopy were used to study the conformational properties of two synthetic peptides, D82-R101 and D82-I109, encompassing the caveolin scaffolding domain (D82-R101), in the presence of dodecylphosphocholine (DPC) micelles. Our data show that a stable helical conformation of the caveolin scaffolding domain in a membrane mimicking system is only obtained for the peptide including the L102-I109 hydrophobic stretch, a part of the caveolin intra-membrane domain. Through chemical shift variations, an ensemble of six residues of the D82-L109 peptide, mainly located in the V(94)TKYWFYR(101) motif were found to detect the presence of phosphatidylserine solubilized in DPC micelles. Our results constitute a first step for elucidating at a residue level the conformational properties of the central region of the caveolin-1 protein.  相似文献   

16.
The four approximately 75-residue domains (repeats) that constitute the annexin core structure all possess an identical five-alpha-helix bundle topology, but the physico-chemical properties of the isolated domains are different. Domain IV of the annexins has previously been expressed only as inclusion bodies, resistant to solubilisation. Analysis of the conserved, exposed hydrophobic residues of the four annexin domains reveals that domain IV contains the largest number of hydrophobic residues involved in interfacial contacts with the other domains. We designed five constructs of domain IV of annexin A2 in which several interfacial hydrophobic residues were substituted by hydrophilic residues. The mutant domain, in which all fully exposed hydrophobic interfacial residues were substituted, was isolated as a soluble protein. Circular dichroism measurements indicate that it harbours a high content of alpha-helical secondary structure and some tertiary structure. The CD-monitored (lambda=222 nm) thermal melting profile suggests a weak cooperative transition. Nuclear magnetic resonance (1H-15N) correlation spectroscopy reveals heterogeneous line broadening and an intermediate spectral dispersion. These properties are indicative of a partially folded protein in which some residues are in a fairly structured conformation, whereas others are in an unfolded state. This conclusion is corroborated by 1-anilinonaphthalene-8-sulfonate fluorescence (ANS) analyses. Surface plasmon resonance measurements also indicate that this domain binds heparin, a known ligand of domain IV in the full-length annexin A2, although with lower affinity.  相似文献   

17.
The structure and dynamic properties of an 80-residue fragment of Ste2p, the G-protein-coupled receptor for α-factor of Saccharomyces cerevisiae, was studied in LPPG micelles with the use of solution NMR spectroscopy. The fragment Ste2p(G31-T110) (TM1-TM2) consisted of 19 residues from the N-terminal domain, the first TM helix (TM1), the first cytoplasmic loop, the second TM helix (TM2), and seven residues from the first extracellular loop. Multidimensional NMR experiments on [15N], [15N, 13C], [15N, 13C, 2H]-labeled TM1-TM2 and on protein fragments selectively labeled at specific amino acid residues or protonated at selected methyl groups resulted in >95% assignment of backbone and side-chain nuclei. The NMR investigation revealed the secondary structure of specific residues of TM1-TM2. TALOS constraints and NOE connectivities were used to calculate a structure for TM1-TM2 that was highlighted by the presence of three α-helices encompassing residues 39-47, 49-72, and 80-103, with higher flexibility around the internal Arg58 site of TM1. RMSD values of individually superimposed helical segments 39-47, 49-72, and 80-103 were 0.25 ± 0.10 Å, 0.40 ± 0.13 Å, and 0.57 ± 0.19 Å, respectively. Several long-range interhelical connectivities supported the folding of TM1-TM2 into a tertiary structure typified by a crossed helix that splays apart toward the extracellular regions and contains considerable flexibility in the G56VRSG60 region. 15N-relaxation and hydrogen-deuterium exchange data support a stable fold for the TM parts of TM1-TM2, whereas the solvent-exposed segments are more flexible. The NMR structure is consistent with the results of biochemical experiments that identified the ligand-binding site within this region of the receptor.  相似文献   

18.
The protein CA forms the mature capsid of human immunodeficiency virus. Hexamerization of the N-terminal domain and dimerization of the C-terminal domain, CAC, occur during capsid assembly, and both domains constitute potential targets for anti-HIV inhibitors. CAC homodimerization occurs mainly through its second helix, and is abolished when its sole tryptophan is mutated to alanine. Previous thermodynamic data obtained with the dimeric and monomeric forms of CAC indicate that the structure of the mutant resembles that of a monomeric intermediate found in the folding and association reactions of CAC. We have solved the three-dimensional structure in aqueous solution of the monomeric mutant. The structure is similar to that of the subunits in the dimeric, nonmutated CAC, except the segment corresponding to the second helix, which is highly dynamic. At the end of this region, the polypeptide chain is bent to bury several hydrophobic residues and, as a consequence, the last two helices are rotated 90 degrees when compared to their position in dimeric CAC. The previously obtained thermodynamic data are consistent with the determined structure of the monomeric mutant. This extraordinary ability of CAC to change its structure may contribute to the different modes of association of CA during HIV assembly, and should be taken into account in the design of new drugs against this virus.  相似文献   

19.
Inhibitor of growth 1 (ING1) is implicated in oncogenesis, DNA damage repair, and apoptosis. Mutations within the ING1 gene and altered expression levels of ING1 are found in multiple human cancers. Here, we show that both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by the peptide microarrays. The molecular mechanism of the histone recognition is elucidated based on a 2.1 Å-resolution crystal structure of the PHD-H3K4me3 complex. The K4me3 occupies a deep hydrophobic pocket formed by the conserved Y212 and W235 residues that make cation-π contacts with the trimethylammonium group. Both aromatic residues are essential in the H3K4me3 recognition, as substitution of these residues with Ala disrupts the interaction. Unlike the wild-type ING1, the W235A mutant, overexpressed in the stable clones of melanoma cells or in HT1080 cells, was unable to stimulate DNA repair after UV irradiation or promote DNA-damage-induced apoptosis, indicating that H3K4me3 binding is necessary for these biological functions of ING1. Furthermore, N216S, V218I, and G221V mutations, found in human malignances, impair the ability of ING1 to associate with H3K4me3 or to induce nucleotide repair and cell death, linking the tumorigenic activity of ING1 with epigenetic regulation. Together, our findings reveal the critical role of the H3K4me3 interaction in mediating cellular responses to genotoxic stresses and offer new insight into the molecular mechanism underlying the tumor suppressive activity of ING1.  相似文献   

20.
Pathogenesis of transmissible spongiform encephalopathies is correlated with a conversion of the normal cellular form of the prion protein (PrPC) into the abnormal isoform (scrapie form of PrP). Contact of the normal PrP with its abnormal isoform, the scrapie form of PrP, induces the transformation. Knowledge of molecules that inhibit such contacts leads to an understanding of the mechanism of the aggregation, and these molecules may serve as leads for drugs against transmissible spongiform encephalopathies. Therefore, we screened a synthetic octapeptide library of the globular domain of the human PrPC for binding affinity to PrPC. Two fragments with binding affinity, 149YYRENMHR156 and 153NMHRYPNQ160, were identified with Kd values of 21 and 25 μM, respectively. A 10-fold excess of peptide 153NMHRYPNQ160 inhibits aggregation of the PrP by 99%. NMR and mass spectrometry showed that the binding region of the peptide 153NMHRYPNQ160 is located at helix 3 of the PrP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号