首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
One of the early events after stimulation of Swiss 3T3 cells with either platelet-derived growth factor (PDGF), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), diacylglycerol, or several other mitogens is the near stoichiometric phosphorylation at tyrosine and serine of a scarce cytoplasmic protein (p42). TPA and diacylglycerol are known to directly stimulate the activity of a protein-serine/threonine kinase, protein kinase C (PKC). PDGF and several other mitogens stimulate tyrosine kinases directly and PKC indirectly. We have therefore examined the involvement of PKC in p42 tyrosine phosphorylation in Swiss 3T3 cells. Firstly, six agents which stimulated phosphorylation of p42 also stimulated phosphorylation of a known PKC substrate, an 80,000-Mr protein (p80). Secondly, in PKC-deficient cells (cells in which PKC activity was reduced to undetectable levels by prolonged exposure to TPA), PDGF-induced p42 phosphorylation was reduced three- to fourfold. Phosphoamino acid analysis of phosphorylated p42 from PDGF-stimulated PKC-deficient cells revealed primarily phosphoserine and only a trace of phosphotyrosine, suggesting that the reduction in PDGF-stimulated tyrosine phosphorylation of p42 resulting from PKC deficiency is greater than three- to fourfold. Finally, comparison of antiphosphotyrosine immunoprecipitates of PKC-deficient versus naive cells revealed that most other PDGF-induced tyrosine phosphorylation events were quite similar. These data suggest that mitogens such as PDGF, which directly stimulate phosphorylation of some proteins at tyrosine, induce p42 tyrosine phosphorylation via a cascade of events involving PKC.  相似文献   

2.
Bombesin and the C-terminal portion of gastrin-releasing peptide (GRP14-27) each increase clonal growth rate and colony-forming efficiency of normal human bronchial epithelial cells. These effects occur in the presence or absence of an optimal concentration (5 ng/ml) of epidermal growth factor (EGF). In contrast to EGF bombesin and GRP14-27 do not stimulate cell migration. Thus, bombesin and the C-terminal fragment of gastrin-releasing peptide represent a new class of peptides mitogenic for normal human epithelial cells.  相似文献   

3.
J Meisenhelder  P G Suh  S G Rhee  T Hunter 《Cell》1989,57(7):1109-1122
Phospholipase C-gamma (PLC-gamma) was rapidly phosphorylated on tyrosines and serines following PDGF and EGF treatment of quiescent 3T3 mouse fibroblasts and A431 human epidermoid cells, respectively, PDGF treatment increased PLC-gamma phosphorylation within 30 sec. This lasted for up to 1 hr, and occurred at high stoichiometry. Continuous receptor occupancy was required to maintain this phosphorylation. Three major sites of tyrosine phosphorylation were detected in PLC-gamma, two of which were phosphorylated in EGF-treated A431 cells. Under certain conditions PDGF receptor coimmunoprecipitated with PLC-gamma, suggesting that PDGF receptor can phosphorylate PLC-gamma directly. Indeed, purified PDGF or EGF receptor phosphorylated purified PLC-gamma on tyrosines identical to those phosphorylated in vivo. Tyrosine phosphorylation of PLC-gamma was not induced by bombesin, TPA, or insulin. Stimulation of PLC-gamma tyrosine phosphorylation and the reported ability of PDGF and EGF to induce phosphatidylinositol turnover in different cells were strongly correlated. We propose that tyrosine phosphorylation of PLC-gamma by PDGF and EGF receptors leads to its activation, and a consequent increase in phosphatidylinositol turnover.  相似文献   

4.
Tumour necrosis factor (TNF) is a potent mitogen for some fibroblast cell lines. Here we have examined the TNF-mediated changes in protein phosphorylation in Swiss 3T3 and human FS-4 fibroblasts, and compared them with changes observed after the treatment of cells with other mitogens, such as platelet-derived growth factor (PDGF) and bombesin. TNF stimulated the rapid phosphorylation of two 41,000-Mr and two 43,000-Mr cytosol proteins on tyrosine, threonine and/or serine, as did PDGF, epidermal growth factor and fibroblast growth factor; the increased levels of this mitogen-induced protein-tyrosine phosphorylation correlated well with the extent of mitogen-induced DNA synthesis as determined by the percentage of labelled nuclei. In contrast, bombesin, which is an even better mitogen for Swiss 3T3 cells than TNF, stimulated the tyrosine phosphorylation of 41,000-Mr and 43,000-Mr proteins only to a limited extent. On the other hand, bombesin and PDGF stimulated the rapid serine phosphorylation of an 80,000-Mr acidic protein, a major substrate for protein kinase C; increased phosphorylation of the 80,000-Mr protein was not observed at all when cells were stimulated with TNF. These results suggest significant differences among the mitogenic signalling pathways of TNF, PDGF and bombesin as regards the involvement of protein kinases; the mitogenic signalling pathway of TNF involves the activation of tyrosine kinase, but not of protein kinase C, whereas bombesin seems to transduce its mitogenic signal mainly through the activation of protein kinase C, and the activation of both kinases seems to be involved in the mitogenic signalling pathway of PDGF.  相似文献   

5.
Addition of bombesin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an Mr 80,000 cellular protein (designated 80k). The effect was both concentration and time dependent; enhancement in 80k phosphorylation could be detected as early as 10 s after the addition of peptide. Recently, a rapid increase in the phosphorylation of an 80k cellular protein after treatment with phorbol esters or diacylglycerol has been shown to reflect the activation of protein kinase C in intact fibroblasts (Rozengurt, E., A. Rodriguez-Pena, and K. A. Smith, 1983, Proc. Natl. Acad. Sci. USA., 80:7244-7248; Rozengurt, E., A. Rodriguez-Pena, M. Coombs, and J. Sinnett-Smith, 1984, Proc. Natl. Acad. Sci. USA., 81:5748-5752). The 80k phosphoproteins generated in response to bombesin and to phorbol 12,13-dibutyrate were identical as judged by one- and two-dimensional PAGE and by peptide mapping after partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with phorbol 12,13-dibutyrate, which leads to the disappearance of protein kinase C activity, blocked the ability of bombesin to stimulate 80k. Bombesin also caused a rapid (1 min) inhibition of 125I-labeled epidermal growth factor (125I-EGF) binding to Swiss 3T3 cells. The inhibition was both concentration and temperature dependent and resulted from a marked decrease in the affinity of the EGF receptor for its ligand. Peptides structurally related to bombesin, including gastrin-releasing peptide, also stimulated 80k phosphorylation and inhibited 125I-EGF binding; both effects were selectively blocked by a novel bombesin antagonist. These results strongly suggest that these responses are mediated by specific high-affinity receptors that recognize the peptides of the bombesin family in Swiss 3T3 cells. While an increase in cytosolic Ca2+ concentration does not mediate the bombesin inhibition of 125I-EGF binding, the activation of protein kinase C in intact Swiss 3T3 cells by peptides of the bombesin family may lead to rapid inhibition of the binding of 125I-EGF to its cellular receptor.  相似文献   

6.
The epidermal growth factor receptor (EGFR) kinase catalyzes phosphorylation of tyrosines in its C terminus and in other cellular targets upon epidermal growth factor (EGF) stimulation. Here, by using peptides derived from EGFR autophosphorylation sites and cellular substrates, we tested the hypothesis that ligand may function to regulate EGFR kinase specificity by modulating the binding affinity of peptide sequences to the active site. Measurement of the steady-state kinetic parameters, K(m) and k(cat), revealed that EGF did not affect the binding of EGFR peptides but increased the binding affinity for peptides corresponding to the major EGFR-mediated phosphorylation sites of the adaptor proteins Gab1 (Tyr-627) and Shc (Tyr-317), and for peptides containing the previously identified optimal EGFR kinase substrate sequence EEEEYFELV (3-7-fold). Conversely, EGF stimulation increased k(cat) approximately 5-fold for all peptides. Thus, ligand changed the relative preference of the EGFR kinase for substrates as evidenced by EGF increases of approximately 5-fold in the specificity constants (k(cat)/K(m)) for EGFR peptides, whereas approximately 15-40-fold increases were observed for other peptides, such as Gab1 Tyr-627. Furthermore, we demonstrate that EGF (i) increased the binding affinity of EGFR to Gab1 Tyr-627 and Shc Tyr-317 sites in purified GST fusion proteins approximately 4-6-fold, and (ii) EGF significantly enhanced the phosphorylation of these sites, relative to EGFR autophosphorylation, in cell lysates containing the full-length Gab1 and Shc proteins. Analysis of peptides containing amino acid substitutions indicated that residues C-terminal to the target tyrosine were critical for EGF-stimulated increases in substrate binding and regulation of kinase specificity. To our knowledge, this represents the first demonstration that ligand can alter specificity of a receptor kinase toward physiologically relevant targets.  相似文献   

7.
The growth of MG63 human osteosarcoma cell line in 5% serum is stimulated by epidermal growth factor (EGF), platelet-derived growth factor (PDGF), or heparin-binding growth factor-1 (HBGF-1). The mitogenic effect of EGF and PDGF is completely blocked by TFG-beta at 1 ng per ml and the effect of HBGF-1 is attenuated by 75-80%. Treatment of MG63 cells with TGF-beta reduces HBGF-1 receptor binding affinity from 1.24 x 10(-11) M to 3.51 x 10(-11) M with no change on the receptor number (1.1 x 10(3) per cell). The receptor-binding affinity of EGF and PDGF is not altered by TGF-beta treatment; however, the number of EGF receptor is increased by 25%. Both EGF and PDGF stimulate MG63 cellular tyrosine kinase activity, and such stimulation is inhibited by TGF-beta pretreatment. No change in the cellular protein tyrosine phosphorylation pattern can be detected in HBGF-1-stimulated cells with and without TGF-beta pretreatment. These data suggest that TGF-beta inhibits EGF and PDGF mitogenicity by blocking EGF- and PDGF-stimulated tyrosine kinase activity and attenuates HBGF-1 mitogenicity by decreasing its receptor affinity.  相似文献   

8.
The phosphorylation of proteins on tyrosine in vivo and in vitro was examined in 3T3 cells stimulated by platelet-derived growth factor (PDGF) and transformed by polyoma middle T antigen (MTAg) by using an antibody directed against phosphotyrosine (P-tyr). Two common events were observed upon PDGF stimulation or MTAg transformation of cells: the appearance in the immunoprecipitates of an 85 kd phosphoprotein, and increased phosphatidylinositol (PI) kinase activity. In PDGF-stimulated cells, the 85 kd phosphoprotein and PI kinase activity appeared rapidly, within 1 min of growth factor addition. The PI kinase activity and 85 kd phosphorylation were also increased in anti-P-tyr immunoprecipitates from cells transformed by v-fms and v-sis, but not by SV40 T antigen. The presence of the tyrosine-phosphorylated 85 kd protein correlated with PI kinase activity during several purification steps. These results suggest that the 85 kd phosphoprotein, a putative PI kinase, is a substrate for both the PDGF receptor and MTAg/pp60c-src tyrosine kinase activities.  相似文献   

9.
Established human lung cancer exhibits a complex pattern of genetic changes as well as several distinct autocrine growth factor loops for regulatory peptides. The best studied example is that of gastrin-releasing peptide (GRP), the mammalian homolog of the amphibian bombesin. It is produced by up to 70% of small cell lung cancers and 10–20% of non-small cell lung cancers. GRP stimulates the growth of normal bronchial epithelium as well as that of small cell lung cancer, and its blockade with the use of antibodies or synthetic antagonists inhibits the growth of these tumors. Study of its molecular biology has revealed a complex pattern of mRNA processing which has lead to the recent isolation of a novel family of peptides termed gastrin-releasing peptide gene-associated peptides (GGAPs), present in normal and malignant human tissues. Additional efforts have been directed at characterizing the GRP receptor as well as its intracellular signaling pathways which have been reported both as G protein phospholipase C coupled events as well as activation of a membrane associated tyrosine kinase. In view of its expression in normal bronchial epithelium and its mitogenic effects on this tissue, GRP appears to play a central role in the early events of pulmonary carcinogenesis.  相似文献   

10.
Heparin and heparan are potent inhibitors of vascular smooth muscle cell (VSMC) proliferation. To investigate the mechanisms by which heparin suppresses growth factor stimulated mitogenesis, the present experiments investigated the effects of heparin on platelet-derived growth factor (PDGF) stimulated signal transduction pathways. Heparin treatment substantially inhibited PDGF-BB stimulated rat VSMC growth. Western analysis showed a 30 min PDGF-BB treatment of VSMC induced the tyrosine phosphorylation of multiple protein bands; cotreatment with heparin inhibited mitogen-activated protein (MAP) kinase tyrosine phosphorylation but had little effect on PDGF receptor tyrosine phosphorylation. In-gel kinase assays demonstrated that heparin inhibited PDGF-BB stimulated MAP kinase activity at late (25 min) but not early (10 min) time points. These data indicate that heparin does not inhibit the initial signalling events after PDGF-BB binding but instead acts through an alternate mechanism to inhibit MAP kinase. To investigate if heparin directly stimulates tyrosine phosphatase-mediated suppression of MAP kinase, we treated VSMC with orthovanadate, a tyrosine phosphatase inhibitor. Heparin inhibited MAP kinase tyrosine phosphorylation after orthovanadate treatment, indicating that heparin does not suppress MAP kinase by enlistment of a tyrosine phosphatase. Experiments were performed to investigate signalling pathways upstream of MAP kinase. To determine if protein kinase C (PKC) mediates PDGF-BB, serum, and EGF stimulation of MAP kinase, we treated VSMC overnight with phorbol ester (PMA) to downregulate PKC. Abolition of conventional and novel PKC activity significantly suppressed both serum and PDGF-BB induced MAP kinase activation, indicating protein kinase C is an important mediator for these mitogens. In contrast, downregulation of these PKC isoforms had little effect on EGF stimulation of MAP kinase. As heparin inhibits PDGF and serum but not EGF stimulation of MAP kinase, these data precisely correlate heparin inhibition of MAP kinase with activation through PKC-dependent pathways. Immunoprecipitation analysis found that heparin inhibited serum, PMA, and PDGF but not EGF induced raf-1 phosphorylation. These studies demonstrate that heparin did not block PDGF-BB receptor activation, which initiates the mitogenic signalling cascade. Heparin did inhibit specific postreceptor second messenger signals, such as the late phase activation of MAP kinase, which may be mediated by suppression of PKC-dependent pathways. J. Cell. Physiol. 172:69–78, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
We report efficient methods for using functional proteomics to study signal transduction pathways in mouse fibroblasts following stimulation with PDGF. After stimulation, complete cellular proteins were separated using two-dimensional electrophoresis and phosphorylated proteins were detected with anti-phosphotyrosine and anti-phosphoserine antibodies. About 260 and 300 phosphorylated proteins were detected with the anti-phosphotyrosine and anti-phosphoserine antibodies, respectively, at least 100 of which showed prominent changes in phosphorylation as a function of time after stimulation. Proteins showing major time-dependent changes in phosphorylation were subjected to in-gel digestion with trypsin and identified by mass spectroscopy using MALDI-TOF mass fingerprinting and ESI peptide sequencing. We have observed phosphorylated proteins known to be part of the PDGF signal transduction pathway such as ERK 1, serine/threonine protein kinase akt and protein tyrosine phosphatase syp, proteins such as proto-oncogene tyrosine kinase fgr previously known to participate in other signal transduction pathways, and some proteins such as plexin-like protein with no previously known function in signal transduction. Information about the phosphorylation site was obtained for proto-oncogene tyrosine kinase fgr and for cardiac alpha-actin. The methods used here have proven to be suitable for the identification of time-dependent changes in large numbers of proteins involved in signal transduction pathways.  相似文献   

12.
One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors.  相似文献   

13.
We showed that the intracellular tyrosine kinases src and pyk2 mediate angiotensin II (Ang II) stimulation of growth and ERK1/2 mitogen-activated protein (MAP) kinase phosphorylation in astrocytes. In this study, we investigated whether the membrane-bound receptor tyrosine kinases platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors mediate Ang II stimulation of ERK1/2 and astrocyte growth. Ang II significantly stimulated PDGF and EGF receptors in a dose- and time-dependent manner. The PDGF receptor and the EGF receptor were maximally stimulated with 100 nM Ang II (0.98+/-0.18- and 4.4+/-1.4-fold above basal, respectively). This stimulation occurred as early as 5 min, and was sustained for at least 15 min for both receptor tyrosine kinases. Moreover, 1 microM AG1478 and 0.25 microM PDGFRInhib attenuated Ang II stimulation of the EGF and PDGF receptors, respectively. Ang II-induced phosphorylation of ERK1/2 and astrocyte growth was mediated by both PDGF and EGF receptors. This report also provides novel findings that co-inhibiting EGF and PDGF receptors had a greater effect to decrease Ang II-induced ERK1/2 (90% versus 49% and 71% with PDGF receptor and EGF receptor inhibition, respectively), and astrocyte growth (60% versus 10% and 32% with PDGF receptor and EGF receptor inhibition, respectively). In conclusion we showed in astrocytes that the PDGF and the EGF receptors mediate Ang II-induced ERK1/2 phosphorylation and astrocyte growth and that these two receptors may exhibit synergism to regulate effects of the peptide in these cells.  相似文献   

14.
Gastrin-releasing peptide (GRP) is a neuroendocrine hormone that may be involved in the pathophysiology of small cell lung carcinoma. We describe carboxylterminal peptide analogues of GRP and bombesin, a 14-residue amphibian homologue, that were modeled after the antagonist [Leu13-psi(CH2NH)-Leu14]bombesin and retained the psi bond. Three novel peptides contained a Leu insertion amino to the psi bond, i.e. ... Leu13Leu14 psi X (residues numbered after bombesin) where X = LeuNH2 or norleucine-NH2). The Leu-insertion analogues behaved as pure partial agonists/antagonists when examined for the ability to stimulate [3H]thymidine incorporation into quiescent Swiss 3T3 cells (agonist activity) and to diminish the agonist response of GRP (antagonist activity). A time course of [3H]thymidine incorporation into quiescent cells indicated maximal incorporation at 20-h post-peptide addition for bombesin and GRP and a Leu-insertion peptide, but the extent of the incorporation for the Leu-insertion peptide was half that of GRP and bombesin. The agonist dose responses of the Leu-insertion peptides (EC50 values of 1-10 nM) paralleled GRP and bombesin, but the maximal response of the Leu-insertion peptides, even at concentrations as high as 10(-4) M, was half the maximal value of GRP or bombesin. High concentrations of the Leu-insertion peptides antagonized 10 nM GRP (a concentration that produced a near-maximal GRP response) yielding a response that was half the maximal value of GRP and equivalent to the maximal response of the Leu-insertion peptides alone. Analogues of the form ... Leu13 psi X behaved as complete antagonists. The KD values of the Leu-insertion peptides for competitive binding versus 125I-GRP (2-50 nM) were as potent as parent ... Leu14 agonists. Stability studies indicated that peptide potencies for both agonist and antagonist activities diminished upon peptide incubation in medium or on cells. The results suggested that, for the Leu-insertion peptides, degradation into distinct products with different activities was not responsible for their partial agonist/antagonist behavior. Computer-generated molecular modeling studies indicated that the novel structures could adopt energy minimized conformations for either an agonist or an antagonist as proposed earlier (Coy, D.H., Heinz-Erian, P., Jiang, N.-Y., Sasaki, Y., Taylor, J., Moreau, J.-P., Wolfrey, W.T., Gardner, J.D., and Jensen, R. T. (1988) J. Biol. Chem. 263, 5056-5060).  相似文献   

15.
Platelet-derived growth factor (PDGF) stimulates the proliferation of quiescent fibroblasts through a series of events initiated by activation of tyrosine kinase activity of the PDGF receptor at the cell surface. Physiologically significant substrates for this or other growth factor receptor or oncogene tyrosine kinases have been difficult to identify. Phospholipase C (PLC), a key enzyme of the phosphoinositide pathway, is believed to be an important site for hormonal regulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate, which produces the intracellular second-messenger molecules inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. Treatment of BALB/c 3T3 cells with PDGF led to a rapid (within 1 min) and significant (greater than 50-fold) increase in PLC activity, as detected in eluates of proteins from a phosphotyrosine immunoaffinity matrix. This PDGF-stimulated increase in phosphotyrosine-immunopurified PLC activity occurred for up to 12 h after addition of growth factor to quiescent cells. Interestingly, the PDGF stimulation occurred at 3 as well as 37 degrees C and in the absence or presence of extracellular Ca2+. Immunoprecipitation of cellular proteins with monoclonal antibodies specific for three distinct cytosolic PLC isozymes demonstrated the presence of a 145-kilodalton isozyme, PLC-gamma (formerly PLC-II), in BALB/c 3T3 cells. Furthermore, these immunoprecipitation studies showed that PLC-gamma is rapidly phosphorylated on tyrosine residues after PDGF stimulation. The results suggest that mitogenic signaling by PDGF is coincident with tyrosine phosphorylation of PLC-gamma.  相似文献   

16.
17.
Synthetic peptides derived from the sequence surrounding tyrosine-857 in the human platelet-derived growth factor (PDGF) beta-receptor were used to elucidate the requirement for length and presence of negative and positively charged amino acids in substrates of the PDGF beta-receptor protein tyrosine kinase. The measured Km for the different peptides were all in the range 1-10 mM. A peptide of only five amino acids, lacking acidic amino acid residues, were found to be substrates for the receptor kinase. Ligand binding was found to stimulate the phosphorylation of peptides mainly by lowering the Km both for peptide and for ATP. Only minor changes in the Vmax occurred upon stimulation with PDGF. The reaction mechanism was found to be sequential, i.e. both the peptide and ATP have to bind to the enzyme before any product is released.  相似文献   

18.
Phospholipase C-gamma 1 (PLC gamma 1) plays an important role in the signal transduction pathway by producing second messengers. However, the activation mechanism of PLC gamma 1 and the role of the phosphatidylinositol pathway for interleukin 2 (IL-2) production in T lymphocytes remain to be determined. To analyze the functional role of this pathway in T cells, we expressed an epidermal growth factor receptor (EGF) or platelet-derived growth factor (PDGF) receptor (EGF-R or PDGF-R), both of which are known to directly activate PLC gamma 1 in fibroblasts, into a murine T-cell hybridoma. Both receptors were expressed on the cell surface and caused tyrosine phosphorylation of multiple substrates, including the receptor itself, upon ligand binding. While EGF stimulation did not either cause phosphorylation of PLC gamma 1 or induce Ca2+ mobilization in the EGF-R transfectant in this system, PDGF treatment induced tyrosine phosphorylation of PLC gamma 1 and Ca2+ mobilization in the PDGF-R transfectant. Stimulation through PDGF-R enhanced IL-2 production upon antigen stimulation of the transfectants, although PDGF treatment alone did not induce IL-2 production. These results suggest that activation of the phosphatidylinositol pathway affects the downstream pathway to IL-2 production but is not sufficient to produce IL-2 and that cooperation with signals from tyrosine kinase cascades is required for IL-2 production.  相似文献   

19.
20.
Quiescent cultures of Swiss 3T3 cells can be stimulated to recommence deoxyribonucleic acid (DNA) synthesis by polypeptide growth factors, neuropeptides and various pharmacological agents that act via multiple signal transduction pathways. Neuropeptides of the bombesin family provide novel and potent mitogens to elucidate these pathways. The peptides bind to specific receptors that have been characterized by radioligand binding and sensitivity to antagonists and identified as glycoproteins of relative molecular mass (Mr) 75,000-85,000 by chemical cross-linking. After binding, bombesin elicits a cascade of early molecular events, including stimulation of phosphorylation of the acidic Mr 80,000 cellular protein (80,000) that is a major substrate of protein kinase C; Ca2+ mobilization mediated by Ins(1,4,5)P3; Na+ and K+ fluxes; transmodulation of (EGF) receptor; enhancement of cyclic adenosine monophosphate (cAMP) accumulation and expression of the proto-oncogenes c-fos and c-myc. Studies using digitonin-permeabilized 3T3 cells show that a G protein plays a role in the transduction of the mitogenic signal triggered by the binding of bombesin to its receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号