首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alu elements have inserted in the human genome throughout primate evolution. A small number of Alu insertions have occurred after the divergence of humans from nonhuman primates and therefore should not be present in nonhuman primate genomes. Most of these recently integrated Alu elements are contained with a series of discrete Alu subfamilies that are related to each other based upon diagnostic nucleotide substitutions. We have extracted members of the Alu Yd subfamily that are derivatives of the Alu Y subfamily that share a common 12-bp deletion that defines the Yd lineage from the draft sequence of the human genome. Analysis of the Yd Alu elements resulted in the recovery of two new Alu subfamilies, Yd3 and Yd6, which contain a total of 295 members (198 Yd3 and 97 Yd6). DNA sequence analysis of each of the Alu Yd subfamilies yielded age estimates of 8.02 and 1.20 million years old for the Alu Yd3 and Yd6 subfamilies, respectively. Two hundred Alu Yd3 and Yd6 loci were screened using polymerase chain reaction (PCR) assays to determine their phylogenetic origin and associated levels of human genomic diversity. The Alu Yd3 subfamily appears to have started amplifying relatively early in primate evolution and continued propagating albeit at a low level as many of its members are found in a variety of hominoid (humans, greater and lesser ape) genomes. Only two of the elements are polymorphic in the human genome and absent from the genomes of nonhuman primates. By contrast all of the members of the Alu Yd6 subfamily are restricted to the human genome, with 12% of the elements representing insertion polymorphisms in human populations. A single Alu Yd6 locus contained an independent parallel forward insertion of a paralogous Alu Sq sequence in the owl monkey. These Alu subfamilies are a source of genomic fossil relics for the study of primate phylogenetics and human population genetics.  相似文献   

2.
The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolution. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome. However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.  相似文献   

3.
We have utilized computational biology to screen GenBank for the presence of recently integrated Ya5 and Yb8 Alu family members. Our analysis identified 2640 Ya5 Alu family members and 1852 Yb8 Alu family members from the draft sequence of the human genome. We selected a set of 475 of these elements for detailed analyses. Analysis of the DNA sequences from the individual Alu elements revealed a low level of random mutations within both subfamilies consistent with the recent origin of these elements within the human genome. Polymerase chain reaction assays were used to determine the phylogenetic distribution and human genomic variation associated with each Alu repeat. Over 99 % of the Ya5 and Yb8 Alu family members were restricted to the human genome and absent from orthologous positions within the genomes of several non-human primates, confirming the recent origin of these Alu subfamilies in the human genome. Approximately 1 % of the analyzed Ya5 and Yb8 Alu family members had integrated into previously undefined repeated regions of the human genome. Analysis of mosaic Yb8 elements suggests gene conversion played an important role in generating sequence diversity among these elements. Of the 475 evaluated elements, a total of 106 of the Ya5 and Yb8 Alu family members were polymorphic for insertion presence/absence within the genomes of a diverse array of human populations. The newly identified Alu insertion polymorphisms will be useful tools for the study of human genomic diversity.  相似文献   

4.
Hereditary non-polyposis colorectal cancer (HNPCC) syndrome is an autosomal, dominantly inherited disease accounting for about 1%–5% of all colorectal cancer cases. HNPCC predisposition is caused by germline mutations in at least five genes coding for DNA mismatch repair (MMR) proteins. More than 400 MMR gene mutations have been identified in HNPCC patients. About 90% of mutations affect the MLH1 and MSH2 genes. The mutational spectrum mainly includes point mutations and small deletions or insertions. Here, we report a large 184 base-pair Alu insertion mutation in exon 6 of the MSH2 gene in a German HNPCC family. The inserted sequence contains repetitive Alu sequence elements that present the highest homology with the old Alu J subfamily. The Alu J insertion was most likely derived from Alu-mediated recombination, since Alu J elements have been found close to the insertion site in adjacent introns, and since elements pivotal for Alu retrotransposition are missing. Our results suggest that the recombination event occurred at least one generation ago. This is the first report of an Alu insertion in the coding sequence of a MMR gene as the cause of HNPCC. Our data thus further extend the spectrum of MMR gene mutations causative for HNPCC.M. Kloor and C. Sutter contributed equally to this work  相似文献   

5.
The Alu Ya-lineage is a group of related, short interspersed elements (SINEs) found in primates. This lineage includes subfamilies Ya1-Ya5, Ya5a2 and others. Some of these subfamilies are still actively mobilizing in the human genome. We have analyzed 2482 elements that reside in the human genome draft sequence and focused our analyses on the 2318 human autosomal Ya Alu elements. A total of 1470 autosomal loci were subjected to polymerase chain reaction (PCR)-based assays that allow analysis of individual Ya-lineage Alu elements. About 22% (313/1452) of the Ya-lineage Alu elements were polymorphic for the insertion presence on human autosomes. Less than 0.01% (5/1452) of the Ya-lineage loci analyzed displayed insertions in orthologous loci in non-human primate genomes. DNA sequence analysis of the orthologous inserts showed that the orthologous loci contained older pre-existing Y, Sc or Sq Alu subfamily elements that were the result of parallel forward insertions or involved in gene conversion events in the human lineage. This study is the largest analysis of a group of "young", evolutionarily related human subfamilies. The size, evolutionary age and variable allele insertion frequencies of several of these subfamilies makes members of the Ya-lineage useful tools for human population studies and primate phylogenetics.  相似文献   

6.
Recently integrated Alu elements and human genomic diversity   总被引:8,自引:0,他引:8  
A comprehensive analysis of two Alu Y lineage subfamilies was undertaken to assess Alu-associated genomic diversity and identify new Alu insertion polymorphisms for the study of human population genetics. Recently integrated Alu elements (283) from the Yg6 and Yi6 subfamilies were analyzed by polymerase chain reaction (PCR), and 25 of the loci analyzed were polymorphic for insertion presence/absence within the genomes of a diverse array of human populations. These newly identified Alu insertion polymorphisms will be useful tools for the study of human genomic diversity. Our screening of the Alu insertion loci also resulted in the recovery of several "young" Alu elements that resided at orthologous positions in nonhuman primate genomes. Sequence analysis demonstrated these "young" Alu insertions were the products of gene conversion events of older, preexisting Alu elements or independent parallel forward insertions of older Alu elements in the same short genomic region. The level of gene conversion between Alu elements suggests that it may have an influence on the single nucleotide polymorphism within Alu elements in the genome. We have also identified two genomic deletions associated with the retroposition and insertion of Alu Y lineage elements into the human genome. This type of Alu retroposition-mediated genomic deletion is a novel source of lineage-specific evolution within primate genomes.  相似文献   

7.

Background  

Alu elements are a family of SINE retrotransposons in primates. They are classified into subfamilies according to specific diagnostic mutations from the general Alu consensus. It is now believed that there may be several retrotranspositionally-competent source genes within an Alu subfamily. To investigate the evolution of young Alu elements it is critical to have access to complete subfamilies, which, following the release of the final human genome assembly, can now be obtained using in silico methods.  相似文献   

8.
Alu elements belonging to the previously identified "young" subfamilies are thought to have inserted in the human genome after the divergence of humans from non-human primates and therefore should not be present in non-human primate genomes. Polymerase chain reaction (PCR) based screening of over 500 Alu insertion loci resulted in the recovery of a few "young" Alu elements that also resided at orthologous positions in non-human primate genomes. Sequence analysis demonstrated these "young" Alu insertions represented gene conversion events of pre-existing ancient Alu elements or independent parallel insertions of older Alu elements in the same genomic region. The level of gene conversion between Alu elements suggests that it may have a significant influence on the single nucleotide diversity within the genome. All the instances of multiple independent Alu insertions within the same small genomic regions were recovered from the owl monkey genome, indicating a higher Alu amplification rate in owl monkeys relative to many other primates. This study suggests that the majority of Alu insertions in primate genomes are the products of unique evolutionary events.  相似文献   

9.
Members of the Alu Yc1 subfamily are distinguished from the older Alu Y subfamily by a signature G-->A substitution at base 148 of their 281-bp consensus sequence. Members of the much older and larger Alu Y subfamily could have by chance accumulated this signature G-->A substitution and be misclassified as belonging to the Alu Yc1 subfamily. Using a Mahanalobis classification method, it was estimated that the "authentic" Alu Yc1 subfamily consists of approximately 262 members in the human genome. PCR amplification and further analysis was successfully completed on 225 of the Yc1 Alu family members. One hundred and seventy-seven Yc1 Alu elements were determined to be monomorphic (fixed for presence) in a panel of diverse human genomes. Forty-eight of the Yc1 Alu elements were polymorphic for insertion presence/absence in diverse human genomes. The insertion polymorphism rate of 21% in the human genome is similar to rates reported previously for other "young" Alu subfamilies. The polymorphic Yc1 Alu elements will be useful genetic loci for the study of human population genetics.  相似文献   

10.
A member of the Alu family of repeated DNA elements has been identified on the long arm of the human Y chromosome, Yq11. This element, referred to as the Y Alu polymorphic (YAP) element, is present at a specific site on the Y chromosome in some humans and is absent in others. Phylogenetic comparisons with other Alu sequences reveal that the YAP element is a member of the polymorphic subfamily-3 (PSF-3), a previously undefined subfamily of Alu elements. The evolutionary relationships of PSF-3 to other Alu subfamilies support the hypothesis that recently inserted elements result from multiple source genes. The frequency of the YAP element is described in 340 individuals from 14 populations, and the data are combined with those from other populations. There is both significant heterogeneity among populations and a clear pattern in the frequencies of the insertion: sub-Saharan Africans have the highest frequencies, followed by northern Africans, Europeans, Oceanians, and Asians. An interesting exception is the relatively high frequency of the YAP element in Japanese. The greatest genetic distance is observed between the African and non-African populations. The YAP is especially useful for studying human population history from the perspective of male lineages.   相似文献   

11.
Summary There are several hundred thousand members of the Alu repeat family in the human genome. Those Alu elements sequenced to date appear to fit into subfamilies. A novel Alu has been found in an intron of the human CAD gene: it appears to be due to rearrangement between Alu repeats belonging to two different subfamilies. Further sequence data from this intron suggest that the Alu element may have rearranged prior to its entry into the CAD gene. Such findings indicate that, in addition to single nucleotide substitutions and deletions, DNA rearrangments may be a factor in generating the diversity of Alu repeats found in primate genomes.  相似文献   

12.

Background  

Alu elements are a family of SINE retrotransposons in primates. They are classified into subfamilies according to specific diagnostic mutations from the general Alu consensus. It is now believed that there may be several retrotranspositionally-competent source genes within an Alu subfamily. In this study, subfamilies falling on the AluYi and AluYh lineages, and the AluYg6 subfamily, are assessed for the presence of secondary source genes, and the influence of gene conversion on the AluYh and AluYi lineages is also described.  相似文献   

13.
Evolution of the master Alu gene(s)   总被引:34,自引:0,他引:34  
Summary A comparison of Alu sequences that comprise more recently amplified Alu subfamilies was made. There are 18 individual diagnostic mutations associated with the different subfamilies. This analysis confirmed that the formation of each subfamily can be explained by the sequential accumulation of mutations relative to the previous subfamily. Polymerase chain reaction amplification of orthologous loci in several primate species allowed us to determine the time of insertion of Alu sequences in individual loci. These data suggest that the vast majority of Alu elements amplified at any given time comprised a single Alu subfamily. We find that, although the individual divergence relative to a consensus sequence correlate reasonably well with sequence age, the diagnostic mutations are a more accurate measure of the age of any individual Alu family member. Our data are consistent with a model in which all Alu family members have been made from a single master gene or from a series of sequential master genes. This master gene(s) accumulated diagnostic base changes, resulting in the amplification of different subfamilies from the master gene at different times in primate evolution. The changes in the master gene(s) probably occurred individually, but their appearance is clearly punctuated. Ten of them have occurred within an 15-million-year time span, 40–25 million years ago, and 8 changes have occurred within the last 5 million years. Surprisingly, no changes appeared in the 20 milion years separating these periods.  相似文献   

14.
Alus are the most abundant and successful short interspersed nuclear elements found in primate genomes. In humans, they represent about 10% of the genome, although few are retrotransposition-competent and are clustered into subfamilies according to the source gene from which they evolved. Recombination between them can lead to genomic rearrangements of clinical and evolutionary significance. In this study, we have addressed the role of recombination in the origin of chimeric Alu source genes by the analysis of all known consensus sequences of human Alus. From the allelic diversity of Alu consensus sequences, validated in extant elements resulting from whole genome searches, distinct events of recombination were detected in the origin of particular subfamilies of AluS and AluY source genes. These results demonstrate that at least two subfamilies are likely to have emerged from ectopic Alu-Alu recombination, which stimulates further research regarding the potential of chimeric active Alus to punctuate the genome.  相似文献   

15.
16.
3'-Untranslated regions (UTRs) of genes often contain key regulatory elements involved in gene expression control. A high degree of evolutionary conservation in regions of the 3'-UTR suggests important, conserved elements. In particular, we are interested in those elements involved in regulation of 3' end formation. In addition to canonical sequence elements, auxiliary sequences likely play an important role in determining the polyadenylation efficiency of mammalian pre-mRNAs. We identified highly conserved sequence elements upstream of the AAUAAA in three human collagen genes, COL1A1, COL1A2, and COL2A1, and demonstrate that these upstream sequence elements (USEs) influence polyadenylation efficiency. Mutation of the USEs decreases polyadenylation efficiency both in vitro and in vivo, and inclusion of competitor oligoribonucleotides representing the USEs specifically inhibit polyadenylation. We have also shown that insertion of a USE into a weak polyadenylation signal can enhance 3' end formation. Close inspection of the COL1A2 3'-UTR reveals an unusual feature of two closely spaced, competing polyadenylation signals. Taken together, these data demonstrate that USEs are important auxiliary polyadenylation elements in mammalian genes.  相似文献   

17.
18.
M C Edwards  R A Gibbs 《Genomics》1992,14(3):590-597
The molecular phylogeny of Alu and other repeated sequences in the human genome provides clues to events during primate evolution. A subclass of human Alu's has been previously identified as dimorphic insertions within members of the medium reiteration frequency (mer) class of repeats, reflecting the complicated sequence of insertion and radiation events leading to the current human genome structure. One dimorphic Alu is located within a previously unidentified mer family member, in the first intron of the human T4 (CD4) gene. The insertion (Alu+ allele) has a frequency of approximately 70% in Europeans and Africans and is homozygous in 20 Asian samples. Polymerase chain reaction amplification, direct DNA sequencing, and Southern analysis using oligonucleotide probes revealed that the Alu- allele was derived from the Alu+ allele by loss of part of the inserted sequence. Comparison with a tightly linked marker within the human genome and studies of baboon DNA samples revealed that the original insertion was a relatively early event in primate evolution, but that the Alu sequence loss leading to the dimorphism has occurred much more recently. Loss of Alu insertions therefore represents one mechanism for the generation of human Alu dimorphisms.  相似文献   

19.
Alu elements undergo amplification through retroposition and integration into new locations throughout primate genomes. Over 500,000 Alu elements reside in the human genome, making the identification of newly inserted Alu repeats the genomic equivalent of finding needles in the haystack. Here, we present two complementary methods for rapid detection of newly integrated Alu elements. In the first approach we employ computational biology to mine the human genomic DNA sequence databases in order to identify recently integrated Alu elements. The second method is based on an anchor-PCR technique which we term Allele-Specific Alu PCR (ASAP). In this approach, Alu elements are selectively amplified from anchored DNA generating a display or 'fingerprint' of recently integrated Alu elements. Alu insertion polymorphisms are then detected by comparison of the DNA fingerprints generated from different samples. Here, we explore the utility of these methods by applying them to the identification of members of the smallest previously identified subfamily of Alu repeats in the human genome termed Ya8. This subfamily of Alu repeats is composed of about 50 elements within the human genome. Approximately 50% of the Ya8 Alu family members have inserted in the human genome so recently that they are polymorphic, making them useful markers for the study of human evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Mammalian transposable elements have intrinsic regulatory elements that can activate neighboring genes, and it is speculated that they can also carry extrinsic transactivating DNA sequences to new genomic locations. We have identified a polymorphic segment of the human interferon-gamma promoter region where two adjacent binding sites for NF-kappaB and NFAT originated from the insertion of an Alu element approximately 22-34 MYA. Both binding sites lie outside the Alu consensus sequence but within the boundaries of the insertion, suggesting that this segment of DNA was comobilized when the Alu element moved from another part of the genome. Sequence comparisons and examination of DNA-protein interactions across nine different primate species indicate that the inserted sequence contained the intact NFAT binding site, whereas the ability to bind NF-kappaB evolved through a series of mutations after the insertion. These observations are consistent with the notion that retropseudogenes can comobilize intact regulatory sequences to new locations and thereby influence the evolution of gene regulatory networks; however, the extent to which such events have shaped the evolution of gene regulation remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号