共查询到20条相似文献,搜索用时 9 毫秒
1.
CcmD is a small membrane protein involved in heme delivery to the heme chaperone CcmE during cytochrome c maturation. Here we show that it physically interacts with CcmE and CcmC, another essential component of the heme delivery system. We demonstrate the formation of a ternary complex consisting of CcmCDE. A deletion analysis of individual domains revealed that the central hydrophobic domain is essential for its function. Moreover, the C-terminal, cytoplasmic domain seems to require a net positive charge to be functional. Our topology analysis indicates that CcmD is an integral interfacial membrane protein with its N and C termini extruding into the cytoplasmic side of the membrane. Interactions of CcmD with either ferrochelatase, the last heme biosynthetic enzyme, or directly with heme were not detectable. We postulate a function for CcmD in protein-protein interaction or membrane protein assembly required for the heme delivery process. 相似文献
2.
Biogenesis of c-type cytochromes requires the covalent attachment of heme to the apoprotein. In Escherichia coli, this process involves eight membrane proteins encoded by the ccmABCDEFGH operon. CcmE binds heme covalently and transfers it to apocytochromes c in the presence of other Ccm proteins. CcmC is necessary and sufficient to incorporate heme into CcmE. Here, we report that the CcmC protein directly interacts with heme. We further show that CcmC co-immunoprecipitates with CcmE. CcmC contains two conserved histidines and a signature sequence, the so-called tryptophan-rich motif, which is the only element common to cytochrome c maturation proteins of bacteria, archae, plant mitochondria, and chloroplasts. We report that mutational changes of these motifs affecting the function of CcmC in cytochrome c maturation do not influence heme binding of CcmC. However, the mutants are defective in the CcmC-CcmE interaction, suggesting that these motifs are involved in the formation of a CcmC-CcmE complex. We propose that CcmC, CcmE, and heme interact directly with each other, establishing a periplasmic heme delivery pathway for cytochrome c maturation. 相似文献
3.
The CcmH protein of Escherichia coli is encoded by the last gene of the ccm gene cluster required for cytochrome c maturation. A mutant in which the entire ccmH gene was deleted failed to synthesize both indigenous and foreign c-type cytochromes. However, deletion of the C-terminal hydrophilic domain homologous to CycH of other gram-negative bacteria
affected neither the biogenesis of indigenous c-type cytochromes nor that of the Bradyrhizobium japonicum cytochrome c
550. This confirmed that only the N-terminal domain containing a conserved CXXC motif is required in E. coli. PhoA fusion analysis showed that this domain is periplasmic. Site-directed mutagenesis of the cysteines of the CXXC motif
revealed that both cysteines are required for cytochrome c maturation during aerobic growth, whereas only the second cysteine is required for cytochrome c maturation during anaerobic growth. The deficiency of the point mutants was complemented when 2-mercapto-ethanesulfonic acid
was added to growing cells; other thiol compounds did not stimulate cytochrome c formation in these strains. We propose a model for the reaction sequence in which CcmH keeps the heme binding site of apocytochrome
c in a reduced form for subsequent heme ligation.
Received: 7 September 1998 / Accepted: 15 November 1998 相似文献
4.
Hartshorne RS Kern M Meyer B Clarke TA Karas M Richardson DJ Simon J 《Molecular microbiology》2007,64(4):1049-1060
In bacterial c-type cytochromes, the haem cofactor is covalently attached via two cysteine residues organized in a haem c-binding motif. Here, a novel octa-haem c protein, MccA, is described that contains only seven conventional haem c-binding motifs (CXXCH), in addition to several single cysteine residues and a conserved CH signature. Mass spectrometric analysis of purified MccA from Wolinella succinogenes suggests that two of the single cysteine residues are actually part of an unprecedented CX15CH sequence involved in haem c binding. Spectroscopic characterization of MccA identified an unusual high-potential haem c with a red-shifted absorption maximum, not unlike that of certain eukaryotic cytochromes c that exceptionally bind haem via only one thioether bridge. A haem lyase gene was found to be specifically required for the maturation of MccA in W. succinogenes. Equivalent haem lyase-encoding genes belonging to either the bacterial cytochrome c biogenesis system I or II are present in the vicinity of every known mccA gene suggesting a dedicated cytochrome c maturation pathway. The results necessitate reconsideration of computer-based prediction of putative haem c-binding motifs in bacterial proteomes. 相似文献
5.
Aramini JM Hamilton K Rossi P Ertekin A Lee HW Lemak A Wang H Xiao R Acton TB Everett JK Montelione GT 《Biochemistry》2012,51(18):3705-3707
Cytochrome c maturation protein E, CcmE, plays an integral role in the transfer of heme to apocytochrome c in many prokaryotes and some mitochondria. A novel subclass featuring a heme-binding cysteine has been identified in archaea and some bacteria. Here we describe the solution NMR structure, backbone dynamics, and heme binding properties of the soluble C-terminal domain of Desulfovibrio vulgaris CcmE, dvCcmE'. The structure adopts a conserved β-barrel OB fold followed by an unstructured C-terminal tail encompassing the CxxxY heme-binding motif. Heme binding analyses of wild-type and mutant dvCcmE' demonstrate the absolute requirement of residue C127 for noncovalent heme binding in vitro. 相似文献
6.
Interspecies complementation of Escherichia coli ccm mutants: CcmE (CycJ) from Bradyrhizobium japonicum acts as a heme chaperone during cytochrome c maturation 下载免费PDF全文
Biogenesis of c-type cytochromes in alpha- and gamma-proteobacteria requires the function of a set of orthologous genes (ccm genes) that encode specific maturation factors. The Escherichia coli CcmE protein is a periplasmic heme chaperone. The membrane protein CcmC is required for loading CcmE with heme. By expressing CcmE (CycJ) from Bradyrhizobium japonicum in E. coli we demonstrated that heme is bound covalently to this protein at a strictly conserved histidine residue. The B. japonicum homologue can transfer heme to apocytochrome c in E. coli, suggesting that it functions as a heme chaperone. CcmC (CycZ) from B. japonicum expressed in E. coli was capable of inserting heme into CcmE. 相似文献
7.
Cytochrome b562 is a periplasmic Escherichia coli protein; previous work has shown that heme can be attached covalently in vivo as a consequence of introduction of one or two cysteines into the heme-binding pocket. A heterogeneous mixture of products was obtained, and it was not established whether the covalent bond formation was catalyzed or spontaneous. Here, we show that coexpression from plasmids of a variant of cytochrome b562 containing a CXXCH heme-binding motif with the E. coli cytochrome c maturation (Ccm) proteins results in an essentially homogeneous product that is a correctly matured c-type cytochrome. Formation of the holocytochrome was accompanied by substantial production of its apo form, in which, for the protein as isolated, there is a disulfide bond between the two cysteines in the CXXCH motif. Following addition of heme to reduced CXXCH apoprotein, spontaneous covalent addition of heme to polypeptide occurred in vitro. Strikingly, the spectral properties were very similar to those of the material obtained from cells in which presumed uncatalyzed addition of heme (i.e. in the absence of Ccm) had been observed. The major product from uncatalyzed heme attachment was an incorrectly matured cytochrome with the heme rotated by 180 degrees relative to its normal orientation. The contrast between Ccm-dependent and Ccm-independent covalent attachment of heme indicates that the Ccm apparatus presents heme to the protein only in the orientation that results in formation of the correct product and also that heme does not become covalently attached to the apocytochrome b562 CXXCH variant without being handled by the Ccm system in the periplasm. The CXXCH variant of cytochrome b562 was also expressed in E. coli strains deficient in the periplasmic reductant DsbD or oxidant DsbA. In the DsbA- strain under aerobic conditions, c-type cytochromes were made abundantly and correctly when the Ccm proteins were expressed. This contrasts with previous reports indicating that DsbA is essential for cytochrome c biogenesis in E. coli. 相似文献
8.
During cytochrome c maturation (Ccm), the DsbA-dependent thio-oxidative protein-folding pathway is thought to introduce a disulphide bond into the haem-binding motif of apocytochromes c. This disulphide bond is believed to be reduced through a thio-reductive pathway involving the Ccm components CcdA (DsbD), CcmG and CcmH. Here, we show in Rhodobacter capsulatus that in the absence of DsbA cytochrome c levels were decreased and CcdA or CcmG or the putative glutathione transporter CydDC was not needed for Ccm. This decrease was not due to overproduction of the periplasmic protease DegP as a secondary effect of DsbA absence. In contrast, CcmH was absolutely necessary regardless of DsbA, indicating that compensatory thio-redox interactions excluded it. Remarkably, the double (DsbA-CcmG) and triple (DsbA-CcmG-CcdA) mutants produced cytochromes c at lower levels than the DsbA-null mutants, unless they contained a CcmG derivative (CcmG*) lacking its thio-reductive activity. Purified CcmG* can bind apocytochrome c in vitro, revealing for the first time a thiol-independent, direct interaction between apocytochrome c and CcmG. Furthermore, elimination of the thio-redox components does not abolish cytochrome c production, restricting the number of Ccm components essential for haem-apocyt c ligation per se during Ccm. 相似文献
9.
The Notch signalling system: recent insights into the complexity of a conserved pathway 总被引:1,自引:0,他引:1
Notch signalling links the fate of one cell to that of an immediate neighbour and consequently controls differentiation, proliferation and apoptotic events in multiple metazoan tissues. Perturbations in this pathway activity have been linked to several human genetic disorders and cancers. Recent genome-scale studies in Drosophila melanogaster have revealed an extraordinarily complex network of genes that can affect Notch activity. This highly interconnected network contrasts our traditional view of the Notch pathway as a simple linear sequence of events. Although we now have an unprecedented insight into the way in which such a fundamental signalling mechanism is controlled by the genome, we are faced with serious challenges in analysing the underlying molecular mechanisms of Notch signal control. 相似文献
10.
Helix movements and the reconstruction of the haem pocket during the evolution of the cytochrome c family 总被引:4,自引:0,他引:4
Analysis of cytochromes c (tuna), c2 (Rhodospirillum rubrum), c550 (Paracoccus denitrificans) and c551 (Pseudomonas aeruginosa) shows that they contain 48 residues identifiable as homologous from superposition of the structures. The other 34 to 64 residues are in loops that vary greatly in sequence, length and conformation, or in alpha-helices that are found in only some of the structures. Of the 48 homologous residues, 17 are in three segments which pack onto the haem faces. In all four structures, these segments have the same conformations, and the same locations relative to the haem. The other 31 residues are in three alpha-helices which are in contact with each other. These form the back and one side of the haem pocket. In cytochrome c551 the positions of the three alpha-helices have shifted and rotated, in comparison with cytochromes c and c2, by up to 5 A and 25 degrees relative to the haem. These shifts, facilitated by mutations at the helix-helix interfaces, are related to the reconstruction of the propionic acid side of the haem pocket described by Almassy & Dickerson (1978). Together these effects produce alternative structures for the haem pocket. This mechanism of adaptation to mutation contrasts with that observed in the globins. In the globins, mutations also produce changes in helix interfaces and shifts of packed helices, but in the globins these shifts are coupled to conserve the structure of the haem pocket. 相似文献
11.
Import of apocytochrome c into the mitochondrial intermembrane space along a cytochrome c1 sorting pathway 总被引:3,自引:0,他引:3
R A Stuart D W Nicholson U Wienhues W Neupert 《The Journal of biological chemistry》1990,265(33):20210-20219
The question of whether cytochrome c could be functionally sorted to the mitochondrial intermembrane space along a "conservative sorting" pathway was investigated using a fusion protein termed pLc1-c. pLc1-c contains 3-fold targeting information, namely, the complete bipartite presequence of the cytochrome c1 precursor joined to the amino terminus of apocytochrome c. pLc1-c could be selectively imported into the intermembrane space either directly across the outer membrane along a cytochrome c import route or along a cytochrome c1 route via the matrix. Thus, apocytochrome c could be sorted along a conservative sorting pathway; however, following reexport from the matrix, apo-Lc1-c could not be converted to its holo counterpart. Despite the apparent similarity of structure and functional location of the heme lyases and similarity of the heme binding regions in their respective apoproteins, cytochrome c heme lyase and cytochrome c1 heme lyase apparently have different and nonoverlapping substrate specificities. 相似文献
12.
Protons are transferred from the inner surface of cytochrome c oxidase to the active site by the D and K pathways, as well as from the D pathway to the outer surface by a largely undefined proton exit route. Alteration of the initial proton acceptor of the D pathway, D132, to alanine has previously been shown to greatly inhibit oxidase turnover and slow proton uptake into the D pathway. Here it is shown that the removal of subunit III restores a substantial rate of O(2) reduction to D132A. Presumably an alternative proton acceptor for the D pathway becomes active in the absence of subunit III and D132. Thus, in the absence of subunit III cytochrome oxidase shows greater flexibility in terms of proton entry into the D pathway. In the presence of DeltaPsi and DeltapH, turnover of the wild-type oxidase or D132A is slower in the absence of subunit III. Comparison of the turnover rates of subunit III-depleted wild-type oxidase to those of the zinc-inhibited wild-type oxidase containing subunit III, both reconstituted into vesicles, leads to the hypothesis that the absence of subunit III inhibits the ability of the normal proton exit pathway to take up protons from the outside in the presence of DeltaPsi and DeltapH. Thus, subunit III appears to affect the transfer of protons from both the inner and outer surfaces of cytochrome oxidase, perhaps accounting for the long-observed lower efficiency of proton pumping by the subunit III-depleted oxidase. 相似文献
13.
The GTP hydrolytic (GTPase) reaction terminates signaling by both large (heterotrimeric) and small (Ras-related) GTP-binding proteins (G proteins). Two residues that are necessary for GTPase activity are an arginine (often called the "arginine finger") found either in the Switch I domains of the alpha subunits of large G proteins or contributed by the GTPase-activating proteins of small G proteins, and a glutamine that is highly conserved in the Switch II domains of Galpha subunits and small G proteins. However, questions still exist regarding the mechanism of the GTPase reaction and the exact role played by the Switch II glutamine. Here, we have characterized the GTP binding and GTPase activities of mutants in which the essential arginine or glutamine residue has been changed within the background of a Galpha chimera (designated alpha(T)*), comprised mainly of the alpha subunit of retinal transducin (alpha(T)) and the Switch III region from the alpha subunit of G(i1). As expected, both the alpha(T)*(R174C) and alpha(T)*(Q200L) mutants exhibited severely compromised GTPase activity. Neither mutant was capable of responding to aluminum fluoride when monitoring changes in the fluorescence of Trp-207 in Switch II, although both stimulated effector activity in the absence of rhodopsin and Gbetagamma. Surprisingly, each mutant also showed some capability for being activated by rhodopsin and Gbetagamma to undergo GDP-[(35)S]GTPgammaS exchange. The ability of the mutants to couple to rhodopsin was not consistent with the assumption that they contained only bound GTP, prompting us to examine their nucleotide-bound states following their expression and purification from Escherichia coli. Indeed, both mutants contained bound GDP as well as GTP, with 35-45% of each mutant being isolated as GDP-P(i) complexes. Overall, these findings suggest that the R174C and Q200L mutations reveal Galpha subunit states that occur subsequent to GTP hydrolysis but are still capable of fully stimulating effector activity. 相似文献
14.
New insights into the role of extracellular matrix during tumor onset and progression 总被引:18,自引:0,他引:18
Recently, a view of the tumor as a functional tissue interconnected with the microenvironment has recently been described. For many years, the stroma has been studied in the context of the malignant lesion, and only rarely has its role been considered before carcinogenic lesions appear. Recent studies have provided evidence that stromal cells and their products can cause the transformation of adjacent cells through transient signaling that leads to the disruption of homeostatic regulation, including control of tissue architecture, adhesion, cell death, and proliferation. It is now well established that tumor progression requires a continually evolving network of interactions between neoplastic cells and extracellular matrix. A relevant step of this process is the remodeling of microenvironment which surrounds tumors leading to the release of ECM-associated growth factors which can then stimulate tumor and/or endothelial cells. Finally, tumor cells reorganizing the extracellular matrix to facilitate communications and escape the homeostatic control exerted by the microenvironment modify response to cytotoxic treatments. 相似文献
15.
Import of cytochrome c heme lyase into mitochondria: a novel pathway into the intermembrane space. 总被引:2,自引:3,他引:2 下载免费PDF全文
Cytochrome c heme lyase (CCHL) catalyses the covalent attachment of the heme group to apocytochrome c during its import into mitochondria. The enzyme is membrane-associated and is located within the intermembrane space. The precursor of CCHL synthesized in vitro was efficiently translocated into isolated mitochondria from Neurospora crassa. The imported CCHL, like the native protein, was correctly localized to the intermembrane space, where it was membrane-bound. As with the majority of mitochondrial precursor proteins, CCHL uses the MOM19-GIP receptor complex in the outer membrane for import. In contrast to proteins taking the general import route, CCHL was imported independently of both ATP-hydrolysis and an electrochemical potential as external energy sources. CCHL which lacks a cleavable signal sequence apparently does not traverse the inner membrane to reach the intermembrane space; rather, it translocates through the outer membrane only. Thus, CCHL represents an example of a novel, 'non-conservative' import pathway into the intermembrane space, thereby also showing that the import apparatus in the outer membrane acts separately from the import machinery in the inner membrane. 相似文献
16.
New insights into the biosynthesis of mycobacterial lipomannan arising from deletion of a conserved gene 总被引:2,自引:0,他引:2
Kaur D McNeil MR Khoo KH Chatterjee D Crick DC Jackson M Brennan PJ 《The Journal of biological chemistry》2007,282(37):27133-27140
Genetic construction of a mutant strain (designated MSMEG4245) of Mycobacterium smegmatis, defective in a broadly conserved gene for a putative glycosyltransferase of the glycosyltransferase-C superfamily, results in a phenotype marked by the virtual absence of the phosphatidylinositol-containing lipomannan and lipoarabinomannan, replaced instead by a novel truncated form of lipomannan. The normal spectrum of phosphatidylinositol mannosides, long presumed precursors of these lipoglycans, was retained. Matrix-assisted laser desorption/ionization-time of flight/mass spectrometry of the mutated form of lipomannan shows a family of phosphatidylinositol-anchored lipomannans with from only 5 to 20 Manp residues as compared with lipomannan from the wild type strain consisting of 21-34 Manp residues but with few changes in the branching pattern. Thus, MSMEG4245 is apparently a key mannosyltransferase, required for the proper elongation of lipomannan to its normal state and subsequent synthesis of lipoarabinomannan. The corresponding ortholog in Mycobacterium tuberculosis H37Rv has been identified as Rv2174. This previously unrecognized feature of the biosynthesis of lipomannan/lipoarabinomannan allows a significant revision of structural and biosynthetic schemata and provides a molecular basis of selectivity in biosynthesis, as conferred by the MSMEG4245 gene. 相似文献
17.
Joana M. Dantas Leonor Morgado Yuri Y. Londer Ana P. Fernandes Ricardo O. Louro P. Raj Pokkuluri Marianne Schiffer Carlos A. Salgueiro 《Journal of biological inorganic chemistry》2012,17(1):11-24
Cytochromes c
7 are periplasmic triheme proteins that have been reported exclusively in δ-proteobacteria. The structures of five triheme
cytochromes identified in Geobacter sulfurreducens and one in Desulfuromonas acetoxidans have been determined. In addition to the hemes and axial histidines, a single aromatic residue is conserved in all these
proteins—phenylalanine 15 (F15). PpcA is a member of the G. sulfurreducens cytochrome c
7 family that performs electron/proton energy transduction in addition to electron transfer that leads to the reduction of
extracellular electron acceptors. For the first time we probed the role of the F15 residue in the PpcA functional mechanism,
by replacing this residue with the aliphatic leucine by site-directed mutagenesis. The analysis of NMR spectra of both oxidized
and reduced forms showed that the heme core and the overall fold of the mutated protein were not affected. However, the analysis
of 1H–15N heteronuclear single quantum coherence NMR spectra evidenced local rearrangements in the α-helix placed between hemes I
and III that lead to structural readjustments in the orientation of heme axial ligands. The detailed thermodynamic characterization
of F15L mutant revealed that the reduction potentials are more negative and the redox-Bohr effect is decreased. The redox
potential of heme III is most affected. It is of interest that the mutation in F15, located between hemes I and III in PpcA,
changes the characteristics of the two hemes differently. Altogether, these modifications disrupt the balance of the global
network of cooperativities, preventing the F15L mutant protein from performing a concerted electron/proton transfer. 相似文献
18.
A study of the magnetic properties of haem a3 in cytochrome c oxidase by using magnetic-circular-dichroism spectroscopy. 总被引:1,自引:4,他引:1 下载免费PDF全文
M.c.d. (magnetic-circular-dichroism) spectroscopy was used to study the magnetization properties of the haem centres in cytochrome c oxidase with magnetic fields of between 0 and 5.3 T over the temperature range 1.5--200 K. The oxidized, oxidized cyanide and partially reduced cyanide forms of the enzyme were studied. In the oxidized state only cytochrome a3+ is detectable by m.c.d. spectroscopy, and its magnetization characteristics show it to be a low-spin ferric haem. In the partially reduced cyanide form of the enzyme cytochrome a is in the diamagnetic low-spin ferrous form, whereas cytochrome a3--CN is e.p.r.-detectable and gives an m.c.d.-magnetization curve typical of a low-spin ferric haem. In the oxidized cyanide form of the enzyme both cytochrome a and cytochrome a3--CN are detectable by m.c.d. spectroscopy, although only cytochrome a gives an e.p.r. signal. The magnetization characteristics of haem a3--CN show clearly that its ground state is an electronic doublet and that another state, probably a spin singlet, lies greater than 10 cm-1 above this. These features are well accounted for by an electronic state of spin S = 1 with a predominantly axial distortion, which leaves the doublet, Ms = +/- 1, as the ground state and the component Ms = 0 as the excited state. This state would not give an e.p.r. signal. Such an electronic state could arise either from a ferromagnetic coupling between haem a3+(3)-CN and the cupric ion, Cua3, or form a haem in the Fe(IV) state. 相似文献
19.
Yoshihiro Sambongi Susumu Uchiyama Yuji Kobayashi Yasuo Igarashi Jun Hasegawa 《European journal of biochemistry》2002,269(14):3355-3361
Cytochrome c is widely distributed in bacterial species, from mesophiles to thermophiles, and is one of the best-characterized redox proteins in terms of biogenesis, folding, structure, function, and evolution. Experimental molecular biology techniques (gene cloning and expression) have become applicable to cytochrome c, enabling its engineering and manipulation. Heterologous expression systems for cytochromes c in bacteria, for use in mutagenesis studies, have been established by extensive investigation of the biological process by which the functional structure is formed. Mutagenesis and structure analyses based on comparative studies using a thermophile Hydrogenobacter thermophilus cytochrome c-552 and its mesophilic counterpart have provided substantial clues to the mechanism underlying protein stability at the amino-acid level. The molecular mechanisms underlying protein maturation, folding, and stability in bacterial cytochromes c are beginning to be understood. 相似文献
20.
Feissner RE Richard-Fogal CL Frawley ER Loughman JA Earley KW Kranz RG 《Molecular microbiology》2006,60(3):563-577
Genetic analysis has indicated that the system II pathway for c-type cytochrome biogenesis in Bordetella pertussis requires at least four biogenesis proteins (CcsB, CcsA, DsbD and CcsX). In this study, the eight genes (ccmA-H) associated with the system I pathway in Escherichia coli were deleted. Using B. pertussis cytochrome c4 as a reporter for cytochromes c assembly, it is demonstrated that a single fused ccsBA polypeptide can replace the function of the eight system I genes in E. coli. Thus, the CcsB and CcsA membrane complex of system II is likely to possess the haem delivery and periplasmic cytochrome c-haem ligation functions. Using recombinant system II and system I, both under control of IPTG, we have begun to study the capabilities and characteristics of each system in the same organism (E. coli). The ferrochelatase inhibitor N-methylprotoporphyrin was used to modulate haem levels in vivo and it is shown that system I can use endogenous haem at much lower levels than system II. Additionally, while system I encodes a covalently bound haem chaperone (holo-CcmE), no covalent intermediate has been found in system II. It is shown that this allows system I to use holo-CcmE as a haem reservoir, a capability system II does not possess. 相似文献