首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naoi K  Hashimoto T 《The Plant cell》2004,16(7):1841-1853
Reversible protein phosphorylation regulates many cellular processes, including the dynamics and organization of the microtubule cytoskeleton, but the events mediating it are poorly understood. A semidominant phs1-1 allele of the Arabidopsis thaliana PROPYZAMIDE-HYPERSENSITIVE 1 locus exhibits phenotypes indicative of compromised cortical microtubule functions, such as left-handed helical growth of seedling roots, defective anisotropic growth at low doses of microtubule-destabilizing drugs, enhancement of the temperature-sensitive microtubule organization1-1 phenotype, and less ordered and more fragmented cortical microtubule arrays compared with the wild type. PHS1 encodes a novel protein similar to mitogen-activated protein kinase (MAPK) phosphatases. In phs1-1, a conserved Arg residue in the noncatalytic N-terminal region is exchanged with Cys, and the mutant PHS1 retained considerable phosphatase activity in vitro. In mammalian MAPK phosphatases, the corresponding region serves as a docking motif for MAPKs, and analogous Arg substitutions severely inhibit the kinase-phosphatase association. Transgenic studies indicate that the phs1-1 mutation acts dominant negatively, whereas the null phs1-2 allele is recessive embryonic lethal. We propose that the PHS1 phosphatase regulates more than one MAPK and that a subset of its target kinases is involved in the organization of cortical microtubules.  相似文献   

2.
Mitogen-activated protein kinase (MAPK) signalling networks are important regulators of environmental responses and developmental processes in plants. To understand the role of MAPK signalling modules in the regulation of plant microtubule functions, we searched for MAPKs that interact with the dual-specificity MAPK phosphatase, PROPYZAMIDE HYPERSENSITIVE 1 ( PHS1 ), whose mutation has previously been reported to confer hypersensitivity to microtubule-disrupting drugs in Arabidopsis. Yeast two-hybrid assays demonstrated that PHS1 specifically interacts with two MAPKs, MPK12 and MPK18. Bimolecular fluorescence complementation (BiFC) studies confirmed that the PHS1 and MPK18 proteins are physically coupled, and that this interaction occurs in the cytoplasm. At the biochemical level, in vitro dephosphorylation assays indicated that phospho-MPK18 can be dephosphorylated by recombinant PHS1. Mutant mpk18 seedlings show defects in microtubule-related functions, and have moderately stabilized microtubules. Absence of MPK18 in the phs1-1 background partially complements the phs1-1 root growth phenotypes, providing genetic evidence for involvement of MPK18 signalling in microtubule-related functions. We propose a model whereby the PHS1–MPK18 signalling module is involved in a phosphorylation/dephosphorylation switch that regulates cortical microtubule functions.  相似文献   

3.
Arabidopsis thaliana has two isoforms of alpha‐glycan phosphorylase (EC 2.4.1.1), one residing in the plastid and the other in the cytosol. The cytosolic phosphorylase, PHS2, acts on soluble heteroglycans that constitute a part of the carbohydrate pool in a plant. This study aimed to define a physiological role for PHS2. Under standard growth conditions phs2 knock‐out mutants do not show any clear growth phenotype, and we hypothesised that during low‐light conditions where carbohydrate imbalance is perturbed, this enzyme is important. Soil‐grown phs2 mutant plants developed leaf lesions when placed in very low light. Analysis of soluble heteroglycan (SHG) levels showed that the amount of glucose residues in SHG was higher in the phs2 mutant compared to wild‐type plants. Furthermore, a standard senescence assay from soil‐grown phs2 mutant plants showed that leaves senesced significantly faster in darkness than the wild‐type leaves. We also found decreased hypocotyl extension in in vitro‐grown phs2 mutant seedlings when grown for long time in darkness at 6 °C. We conclude that PHS2 activity is important in the adult stage during low‐light conditions and senescence, as well as during prolonged seedling development when carbohydrate levels are unbalanced.  相似文献   

4.
The plant hormone abscisic acid (ABA) controls numerous physiological traits: dormancy and germination of seeds, senescence and resistance to abiotic stresses. In order to get more insight into the role of protein tyrosine phosphatase (PTP) in ABA signalling, we obtained eight homozygous T-DNA insertion lines in Arabidopsis thaliana PTP genes. One mutant, named phs1-3, exhibited a strong ABA-induced inhibition of germination as only 26% of its seeds germinated after 3 days instead of 92% for the Columbia (Col-0) line. Genetic and molecular analyses of phs1-3 showed that it bears a unique T-DNA insertion in the promoter of the gene and that the mutation is recessive. PHS1 expression in the mutant is about half that of the Col-0 line. The upregulation of two ABA-induced genes (At5g06760, RAB18) and the downregulation of two ABA-repressed genes (AtCLC-A, ACL) are enhanced in the phs1-3 mutant compared with the wild-type. The 'in planta' aperture of phs1-3 stomata is reduced and the inhibition of the light-induced opening of stomata by ABA is stronger in phs1-3 leaves than in Col-0 leaves. Finally, PHS1 expression is upregulated in the presence of ABA in both phs1-3 and Col-0 but more intensively in the mutant. Thus, phs1-3 is hypersensitive to ABA. Taken together, these results show that PHS1, which encodes a dual-specificity PTP, is a negative regulator of ABA signalling.  相似文献   

5.
Preharvest sprouting (PHS) in rain-affected wheat (Triticum aestivum) is a major constraint to the production of high-quality wheat, especially in regions where white grain wheat cultivars are preferred. To characterize quantitative trait loci (QTLs) for PHS resistance and seed dormancy (SD), we evaluated 162 recombinant inbred lines developed from the cross between PHS-resistant white wheat landrace Tutoumai A and PHS-susceptible white wheat cultivar ‘Siyang 936’ for PHS resistance and SD in field and greenhouse experiments. Composite interval mapping (CIM) identified four QTLs for PHS resistance and long SD that explained up to 45 and 40.8% of the phenotypic variation in five PHS and four SD experiments, respectively. Qphs.pseru-4A.1 was detected in three of the five PHS experiments, and Qphs.pseru-5B.1, Qphs.pseru-5B.2, and Qphs.pseru-4B.1 were detected in two of the five PHS experiments, respectively. All four QTLs for PHS resistance also affected SD. Qphs.pseru-4A.1 was significant in all four SD experiments; the other three QTLs were detected only in one experiment. Additive and epistatic effects were observed for PHS resistance and SD. Besides three additive QTLs for PHS resistance and two for long SD, an additional 11 and 10 QTLs were detected with epistatic effects on PHS resistance and SD, respectively. The major genetic component of PHS resistance was SD, and other genetic factors may also contribute to PHS resistance in this population.  相似文献   

6.
Pre‐harvest sprouting (PHS) is one of the major problems in cereal production worldwide, which causes significant losses of both yield and quality; however, the molecular mechanism underlying PHS remains largely unknown. Here, we identified a dominant PHS mutant phs9‐D. The corresponding gene PHS9 encodes a higher plant unique CC‐type glutaredoxin and is specifically expressed in the embryo at the late embryogenesis stage, implying that PHS9 plays some roles in the late stage of seed development. Yeast two‐hybrid screening showed that PHS9 could interact with OsGAP, which is an interaction partner of the abscicic acid (ABA) receptor OsRCAR1. PHS9‐ or OsGAP overexpression plants showed reduced ABA sensitivity in seed germination, whereas PHS9 or OsGAP knock‐out mutant plants showed increased ABA sensitivity in seed germination, suggesting that PHS9 and OsGAP acted as negative regulators in ABA signaling during seed germination. Interestingly, the germination of PHS9 and OsGAP overexpression or knock‐out plant seeds was weakly promoted by H2O2, implying that PHS9 and OsGAP could affect reactive oxygen species (ROS) signaling during seed germination. These results indicate that PHS9 plays an important role in the regulation of rice PHS through the integration of ROS signaling and ABA signaling.  相似文献   

7.
Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Phytohormones such as abscisic acid (ABA) and indole-3-acetic acid (IAA) play critical roles in developmental progresses and environmental responses through complex signalling networks. However, crosstalk between the two hormones at the biosynthesis level remains largely unknown. Here, we report that carotenoid-deficient mutants (phs1, phs2, phs3-1, phs4, and PDS-RNAi transgenic rice) were impaired in the biosynthesis of ABA and IAA. Under drought conditions, phs3-1 and PDS-RNAi transgenic rice showed larger stomata aperture and earlier wilting compared to the wild type at both seedling and panicle developmental stage. Interestingly, these carotenoid-deficient lines showed increased cold resistance, which was likely due to the combined effects of reduced IAA content, alleviated oxidative damage and decreased membrane penetrability. Furthermore, we found that IAA content was significantly declined in rice treated with fluridone (a carotenoid and ABA biosynthesis inhibitor), and expression of auxin synthesis and metabolism-related genes were altered in the fluridone-treated rice similar to that in the carotenoid-deficient mutants. In addition, exogenous IAA, but not ABA, could restore the dwarf phenotype of phs3-1 and PDS-RNAi transgenic rice. These results support a crosstalk between ABA and IAA at the biosynthesis level, and this crosstalk is involved in development and differentially affects drought and cold tolerance in rice.  相似文献   

8.
Pre-harvest sprouting (PHS) or vivipary in cereals is an important agronomic trait that results in significant economic loss. A considerable number of mutations that cause PHS have been identified in several species. However, relatively few viviparous mutants in rice ( Oryza sativa L.) have been reported. To explore the mechanism of PHS in rice, we carried out an extensive genetic screening and identified 12 PHS mutants ( phs ). Based on their phenotypes, these phs mutants were classified into three groups. Here we characterize in detail one of these groups, which contains mutations in genes encoding major enzymes of the carotenoid biosynthesis pathway, including phytoene desaturase (OsPDS), ζ-carotene desaturase (OsZDS), carotenoid isomerase (OsCRTISO) and lycopene β -cyclase (β-OsLCY), which are essential for the biosynthesis of carotenoid precursors of ABA. As expected, the amount of ABA was reduced in all four phs mutants compared with that in the wild type. Chlorophyll fluorescence analysis revealed the occurrence of photoinhibition in the photosystem and decreased capacity for eliminating excess energy by thermal dissipation. The greatly increased activities of reactive oxygen species (ROS) scavenging enzymes, and reduced photosystem (PS) II core proteins CP43, CP47 and D1 in leaves of the Oscrtiso / phs3-1 mutant and OsLCY RNAi transgenic rice indicated that photo-oxidative damage occurred in PS II, consistent with the accumulation of ROS in these plants. These results suggest that the impairment of carotenoid biosynthesis causes photo-oxidation and ABA-deficiency phenotypes, of which the latter is a major factor controlling the PHS trait in rice.  相似文献   

9.
The production and dissemination of spores by members of the fungal kingdom is a major reason for the success of this eukaryotic lineage in colonizing most terrestrial ecosystems. Ballistospores are a type of spore produced by basidiomycete fungi, such as the mushrooms and plant pathogenic rusts. These spores are forcefully discharged through a unique liquid-drop fusion mechanism, enabling the aerosolization of these particles that can contribute to plant disease and human allergies. The genes responsible for this process are unknown due to technical challenges in studying many of the fungi that produce ballistospores. Here, we applied newly-developed techniques in a forward genetic screen to identify genes required for ballistospore formation or function in a tractable red yeast, a species of Sporobolomyces. One strain bearing a mutation in the PHS1 gene was identified as a mirror mutant. PHS1 encodes 3-hydroxyacyl-CoA dehydratase required for the third step in very long chain fatty acid biosynthesis. The Sporobolomyces PHS1 gene complements the essential functions of a S. cerevisiae phs1 mutant. The Sporobolomyces phs1 mutant strain has less dehydratase activity and a reduction in very long chain fatty acids compared to wild type. The mutant strain also exhibits sensitivity to cell wall stress agents and loss of shooting due to a delay in ballistospore formation, indicating that the role of Phs1 in spore dissemination may be primarily in cellular integrity.  相似文献   

10.
Barley is used for food and feed, and brewing. Nondormant seeds are required for malting, but the lack of dormancy can lead to preharvest sprouting (PHS), which is also undesired. Here, we report several new loci that modulate barley seed dormancy and PHS. Using genome‐wide association mapping of 184 spring barley genotypes, we identified four new, highly significant associations on chromosomes 1H, 3H, and 5H previously not associated with barley seed dormancy or PHS. A total of 71 responsible genes were found mostly related to flowering time and hormone signalling. A homolog of the well‐known Arabidopsis Delay of Germination 1 (DOG1) gene was annotated on the barley chromosome 3H. Unexpectedly, DOG1 appears to play only a minor role in barley seed dormancy. However, the gibberellin oxidase gene HvGA20ox1 contributed to dormancy alleviation, and another seven important loci changed significantly during after‐ripening. Furthermore, nitric oxide release correlated negatively with dormancy and shared 27 associations. Origin and growth environment affected seed dormancy and PHS more than did agronomic traits. Days to anthesis and maturity were shorter when seeds were produced under drier conditions, seeds were less dormant, and PHS increased, with a heritability of 0.57–0.80. The results are expected to be useful for crop improvement.  相似文献   

11.
Dong HP  Yu H  Bao Z  Guo X  Peng J  Yao Z  Chen G  Qu S  Dong H 《Planta》2005,221(3):313-327
HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.Hong-Ping Dong and Haiqin Yu contributed equally to this study and are regarded as joint first authors.  相似文献   

12.
Abscisic acid (ABA) is a key phytohormone that regulates plant growth and developmental processes, including seed germination and stomatal closing. Here, we report the identification and functional characterization of a novel type 2C protein phosphatase, CaADIP1 (Capsicum annuum A BA and D rought‐I nduced P rotein phosphatase 1). The expression of CaADIP1 was induced in pepper leaves by ABA, drought and NaCl treatments. Arabidopsis plants overexpressing CaADIP1 (CaADIP1‐OX) exhibited an ABA‐hyposensitive and drought‐susceptible phenotype. We used a yeast two‐hybrid screening assay to identify CaRLP1 (Capsicum annuum R CAR‐L ike P rotein 1), which interacts with CaADIP1 in the cytoplasm and nucleus. In contrast to CaADIP1‐OX plants, CaRLP1‐OX plants displayed an ABA‐hypersensitive and drought‐tolerant phenotype, which was characterized by low levels of transpirational water loss and increased expression of stress‐responsive genes relative to those of wild‐type plants. In CaADIP1‐OX/CaRLP1‐OX double transgenic plants, ectopic expression of the CaRLP1 gene led to strong suppression of CaADIP1‐induced ABA hyposensitivity during the germinative and post‐germinative stages, indicating that CaADIP1 and CaRLP1 act in the same signalling pathway and CaADIP1 functions downstream of CaRLP1. Our results indicate that CaADIP1 and its interacting partner CaRLP1 antagonistically regulate the ABA‐dependent defense signalling response to drought stress.  相似文献   

13.
14.
The Saccharomyces cerevisiae Cdc14 protein phosphatase and Dbf2 protein kinase have been implicated to act during late M phase, but their functions are not known. We report here that CDC14 is a low-copy suppressor of the dbf2-2 mutation at 37° C. The kinase activity of Dbf2 accumulated at a high level, in vivo, during a cdc14 arrest and was also much higher in cdc14 mutant cells at the permissive temperature of growth, therefore in cycling mutant cells than in cycling wild-type cells. This correlated with the accumulation of the more slowly migrating form of Dbf2, previously shown to correspond to the hyperphosphorylated form of the protein. The finding that the dbf2-2 mutation could be rescued following overproduction of catalytically inactive forms of Cdc14 suggested that the control of Dbf2 activity by Cdc14 might be only indirect and independent of Cdc14 phosphatase activity. However, it was found that Cdc14 could form oligomers within the cell, thus leaving open the possibility that catalytically inactive Cdc14 might associate with wild-type Cdc14 and rescue dbf2-2 in a phosphatase-dependent manner. We confirmed that overexpression of CDC14 could rescue mutations in CDC15, which encodes another kinase also implicated to act in late M phase. Cells of a cdc15-2dbf2-2 double mutant died at temperatures much lower than did either single mutant, whereas there was only a slight additive phenotype in the cdc14-1 dbf2-2 and cdc14-1 cdc15-2 double mutant cells. Finally, functional association between Cdc14 and Dbf2 (and also Cdc15) was confirmed by the finding that the cdc14, dbf2 and cdc15 mutations could be partially rescued by the addition of 1.2 M sorbitol to the culture medium. Our data are the first to demonstrate a functional link between Cdc14 and Dbf2 based on both biochemical and genetic information. Received: 19 September 1997 / Accepted: 4 December 1997  相似文献   

15.

Key message

Fine mapping by recombinant backcross populations revealed that a preharvest sprouting QTL on 2B contained two QTLs linked in coupling with different effects on the phenotype.

Abstract

Wheat preharvest sprouting (PHS) occurs when grain germinates on the plant before harvest, resulting in reduced grain quality. Previous mapping of quantitative trait locus (QTL) revealed a major PHS QTL, QPhs.cnl-2B.1, located on chromosome 2B significant in 16 environments that explained from 5 to 31 % of the phenotypic variation. The objective of this project was to fine map the QPhs.cnl-2B.1 interval. Fine mapping was carried out in recombinant backcross populations (BC1F4 and BC1F5) that were developed by backcrossing selected doubled haploids to a recurrent parent and self-pollinating the BC1F4 and BC1F5 generations. In each generation, three markers in the QPhs.cnl-2B.1 interval were used to screen for recombinants. Fine mapping revealed that the QPhs.cnl-2B.1 interval contained two PHS QTLs linked in coupling. The distal PHS QTL, located between Wmc453c and Barc55, contributed 8 % of the phenotypic variation and also co-located with a major seed dormancy QTL determined by germination index. The proximal PHS QTL, between Wmc474 and CNL415-rCDPK, contributed 16 % of the variation. Several candidate genes including Mg-chelatase H subunit family protein, GTP-binding protein and calmodulin/Ca2+-dependent protein kinase were linked to the PHS QTL. Although many recombinant lines were identified, the lack of polymorphism for markers in the QTL interval prevented the localization of the recombination breakpoints and identification of the gene underlying the phenotype.  相似文献   

16.
17.
18.
19.
Huang B  Lin W  Cheung PC  Wu J 《Current microbiology》2011,62(4):1160-1167
Autolysis is an important physiological process found in fungal cultivation. However, there is hitherto no report on the autolysis of Pleurotus tuber-regium. We have investigated the enzymes secreted by temperature-induced (40°C as treatment versus 10°C as control) autolysis of the mycelium of P. tuber-regium grown in submerged cultivation. A comparison between the intracellular proteins (inside the mycelium) and the extracellular proteins (in the culture medium) of the treatment and control by proteomic analysis involving 2D PAGE and MALDI–TOF–MS was made. Twenty-two up-regulated protein spots were detected and eight proteins were identified. They included proteasome which participates in the ubiquitin–proteasome pathway; β-1,3-glucanosyltransferase and tubulin which are involved in the renewal and repair of cell wall; protease and endoglucanase which promote the natural degradation of cell wall and cytoplasm; 14-3-3 protein which takes part in cell signal transduction; and two putative proteins presumably relate to the autolysis process. These identified proteins suggest partially the metabolic processes of the autolysis in the P. tuber-regium mycelium.  相似文献   

20.
Pre-harvest sprouting (PHS) in sorghum is related to the lack of a normal dormancy level during seed development and maturation. Based on previous evidence that seed dormancy in maize is controlled by the vp1 gene, we used a PCR-based approach to isolate two Sorghum bicolor genomic and cDNA clones from two genotypes exhibiting different PHS behaviour and sensitivity to abscisic acid (ABA). The two 699 amino acid predicted protein sequences differ in two residues at positions 341 (Gly or Cys within the repression domain) and 448 (Pro or Ser) and show over 80, 70 and 60% homology to maize, rice and oat VP1 proteins respectively.Expression analysis of the sorghum vp1 gene in the two lines shows a slightly higher level of vp1 mRNA in the embryos susceptible to PHS than in those resistant to PHS during embryogenesis. However, timing of expression was different between these genotypes during this developmental process. Whereas for the former the main peak of expression was observed at 20 days after pollination (DAP), the peak in the latter was found at later developmental stages when seed maturation was almost complete.Under favourable germination conditions and in the presence of fluridone (an inhibitor of ABA biosynthesis), sorghum vp1 mRNA showed to be consistently correlated with sensitivity to ABA but not with ABA content and dormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号