首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic obstructive pulmonary disease (COPD) is a complex disease, the pathogenesis of which remains incompletely understood. Colonization with Pneumocystis jirovecii may play a role in COPD pathogenesis; however, the mechanisms by which such colonization contributes to COPD are unknown. The objective of this study was to determine lung gene expression profiles associated with Pneumocystis colonization in patients with COPD to identify potential key pathways involved in disease pathogenesis. Using COPD lung tissue samples made available through the Lung Tissue Research Consortium (LTRC), Pneumocystis colonization status was determined by nested PCR. Microarray gene expression profiles were performed for each sample and the profiles of colonized and non‐colonized samples compared. Overall, 18 participants (8.5%) were Pneumocystis‐colonized. Pneumocystis colonization was associated with fold increase in expression of four closely related genes: INF‐γ and the three chemokine ligands CXCL9, CXCL10, and CXCL11. These ligands are chemoattractants for the common cognate receptor CXCR3, which is predominantly expressed on activated Th1 T‐lymphocytes. Although these ligand–receptor pairs have previously been implicated in COPD pathogenesis, few initiators of ligand expression and subsequent lymphocyte trafficking have been identified: our findings implicate Pneumocystis as a potential trigger. The finding of upregulation of these inflammatory genes in the setting of Pneumocystis colonization sheds light on infectious‐immune relationships in COPD.  相似文献   

2.
The detection of Pneumocystis DNA in clinical specimens by using PCR assays is leading to important advances in Pneumocystis pneumonia (PcP) clinical diagnosis, therapy and epidemiology. Highly sensitive and specific PCR tools improved the clinical diagnosis of PcP allowing an accurate, early diagnosis of Pneumocystis infection, which should lead to a decreased duration from onset of symptoms to treatment, a period with recognized impact on prognosis. This aspect has marked importance in HIV-negative immunocompromised patients, who develop often PcP with lower parasite rates than AIDS patients. The specific amplification of selected polymorphous sequences of Pneumocystis jirovecii genome, especially of internal transcribed spacer regions of the nuclear rRNA operon, has led to the identification of specific parasite genotypes which might be associated with PcP severity. Moreover, multi-locus genotyping revealed to be a useful tool to explore person-to-person transmission. Furthermore, PCR was recently used for detecting P. jirovecii dihydropteroate synthase gene mutations, which are apparently associated with sulfa drug resistance. PCR assays detected Pneumocystis-DNA in bronchoalveolar lavage fluid or biopsy specimens, but also in oropharyngeal washings obtained by rinsing of the mouth. This non-invasive procedure may reach 90%-sensitivity and has been used for monitoring the response to treatment in AIDS patients and for typing Pneumocystis isolates.  相似文献   

3.
The most efficient drug against the human pathogenic fungus Pneumocystis jirovecii is cotrimoxazole targeting the folate biosynthesis. However, resistance toward it is emerging and adverse effects occur in some patients. Studies in rodent models suggested that echinocandins could be useful to treat Pneumocystis pneumonia. Echinocandins inhibit the catalytic subunit Gsc1 of the enzymatic complex ensuring the synthesis of 1,3‐β glucan, an essential constituent of cell walls of most fungi. Besides, inhibitors of the enzyme Kre6 involved in the synthesis of 1,6‐β glucan, another essential component of fungal walls, were recently described. We identified and functionally characterized these two potential drug targets in the human pathogen P. jirovecii by rescue of the null allele of the orthologous gene in Saccharomyces cerevisiae. The P. jirovecii proteins Gsc1 and Kre6 identified using those of the relative Pneumocystis carinii as the query sequence showed high sequence identity to the putative fungal orthologs (53–97% in conserved functional domains). The expression of their encoding genes on plasmid rescued the increased sensitivity to, respectively, caspofungin or calcofluor white of the corresponding S. cerevisiae null allele. The uniqueness and likely essentiality of these proteins suggest that they are potential good drug targets.  相似文献   

4.
Pneumocystis pneumonia is a severe opportunistic infection in immunocompromised patients caused by the unusual fungus Pneumocystis jirovecii. Transmission is airborne, with both immunocompromised and immunocompetent individuals acting as a reservoir for the fungus. Numerous reports of outbreaks in renal transplant units demonstrate the need for valid genotyping methods to detect transmission of a given genotype. Here, we developed a short tandem repeat (STR)-based molecular typing method for P. jirovecii. We analyzed the P. jirovecii genome and selected six genomic STR markers located on different contigs of the genome. We then tested these markers in 106 P. jirovecii PCR-positive respiratory samples collected between October 2010 and November 2013 from 91 patients with various underlying medical conditions. Unique (one allele per marker) and multiple (more than one allele per marker) genotypes were observed in 34 (32%) and 72 (68%) samples, respectively. A genotype could be assigned to 55 samples (54 patients) and 61 different genotypes were identified in total with a discriminatory power of 0.992. Analysis of the allelic distribution of the six markers and minimum spanning tree analysis of the 61 genotypes identified a specific genotype (Gt21) in our hospital, which may have been transmitted between 10 patients including six renal transplant recipients. Our STR-based molecular typing method is a quick, cheap and reliable approach to genotype Pneumocystis jirovecii in hospital settings and is sensitive enough to detect minor genotypes, thus enabling the study of the transmission and pathophysiology of Pneumocystis pneumonia.  相似文献   

5.
ABSTRACT. This work reports for the first time the presence of two Pneumocystis species in wild Rattus norvegicus specimens from Thailand. Pneumocystis DNA was detected in 57.7% (15/26) wild rats without apparent association with typical pneumocystosis. Pneumocystis carinii was found alone in five rats (19.2%), Pneumocystis wakefieldiae was detected alone in six rats (23.1%), and two rats were infected by both species (7.7%). In addition, a new P. wakefieldiae variant sequence has been identified in three wild R. norvegicus specimens caught in the same geographical area. The high frequency of Pneumocystis in wild rats documented in this study and the apparent scarcity of severe pneumocystosis were consistent with an efficient circulation of rat Pneumocystis species in ecosystems.  相似文献   

6.
Genes Encoding Antigenic Surface Glycoproteins in Pneumocystis from Humans   总被引:7,自引:0,他引:7  
Pneumocystis is a eukaryotic microbe that causes pneumocystosis, an AIDS-associated pneumonia. Pneumocystosis also occurs in many other mammalian species, and animal-derived organisms have been extensively utilized in Pneumocystis research. Pneumocystis from diverse hosts contain a large glycoprotein (gpA/MSG) on the surface. Antibodies elicited against gpA/MSG of Pneumocystis from humans sometimes cross-react with epitopes on proteins of similar size from Pneumocystis from other host species. Here we report the isolation and partial sequence of two presumptive gpA/MSG genes from human-derived Pneumocystis. The cloned human-derived Pneumocystis gpA/MSG genes and predicted peptides were different from those previously isolated from Pneumocystis from rats and ferrets. The genome of human-derived Pneumocystis contained multiple copies of sequences related to the two cloned gpA/MSG genes.  相似文献   

7.
SYNOPSIS The fine structure of Pneumocystis carinii Delanoë is described in detail and is compared to the fine structure of protozoa and fungi. Pneumocystis does not have ultrastructural affinities to Protozoa but rather to fungi. Specifically, the process of intracystic body formation in the cyst is similar to the formation of ascospores inside a yeast ascus. The significance of the structural similarity between Pneumocystis and fungi is discussed. It is concluded from the ultrastructural evidence that Pneumocystis may indeed be a yeast or have a yeast-like stage in its life cycle. However, Pneumocystis is not completely similar to any fungus whose ultrastructure has been described so far. Perhaps its particular structure may be an adaptation to the parasitic way of life in mammalian lungs. It should be cultivated in order to be sure of its exact taxonomic position.  相似文献   

8.
Pneumocystis jirovecii is a transmissible fungus with a high pulmonary tropism. The prevalence of P. jirovecii in patients with cystic fibrosis (CF) has been estimated in Germany at 7.4%, in Spain at 21.5% and in Brazil at 38.2%. Data on the prevalence of P. jirovecii in CF patients in France remain scarce, particularly in Brittany, where the prevalence of CF is high (from 1/1600 to 1/4500). Our objectives were to determine the prevalence of colonization of the airways by P. jirovecii in Brittany in CF patients monitored at the “Centre de Ressources et de Compétences de la Mucoviscidose (CRCM)” of Rennes compared to that previously observed at the CRCM of Roscoff–Brest. Sputa from 86 patients (178 specimens) followed in Rennes were analyzed retrospectively. The detection of P. jirovecii was performed using real-time PCR targeting the gene encoding the mitochondrial large subunit of ribosomal RNA. Pneumocystis jirovecii DNA was detected in 3/86 patients (3.5%) monitored at Rennes, whereas it had previously been detected in 1/76 patients (1.3%) monitored at Roscoff–Brest, thus showing an overall prevalence of 2.5% in Brittany. These results obtained from two Breton centers taken together show that P. jirovecii prevalence in patients with CF in Brittany is lower than those observed in Germany, Spain, Brazil or in other regions of France. This study is a preliminary step in determining the risk factors for P. jirovecii acquisition, its epidemiological and clinical significance in CF patients through a prospective multicenter study.  相似文献   

9.
Pneumocystis spp. infect the lungs of multiple mammalian species and cause disease in immunosuppressed individuals. The Pneumocystis isolates that have been studied to date fall into two major clades, those from primates and those from rodents. Within each of these clades, different species have been described on the basis of host specificity and differences in sequence and morphology. Here, we demonstrate that dexamethasone immunosuppression consistently results in histologically apparent lung infection in gerbils (28/35 animals). Sequence analysis of the 18S, 5.8S and internal transcribed spacer regions of the rDNA and a portion of the mitochondrial large subunit rDNA demonstrated that this gerbil Pneumocystis is grouped with other rodent Pneumocystis spp., but is distinct from them. Our results suggest that gerbil Pneumocystis differs sufficiently from Pneumocystis species found in other rodents to be considered a separate species.  相似文献   

10.

Background

Pneumocystis pneumonia is a common opportunistic disease in AIDS patients. The alveolar macrophage is an important effector cell in the clearance of Pneumocystis organisms by phagocytosis. However, both the number and phagocytic activity of alveolar macrophages are decreased in Pneumocystis infected hosts. To understand how Pneumocystis inactivates alveolar macrophages, Affymetrix GeneChip® RG-U34A DNA microarrays were used to study the difference in global gene expression in alveolar macrophages from uninfected and Pneumocystis carinii-infected Sprague-Dawley rats.

Results

Analyses of genes that were affected by Pneumocystis infection showed that many functions in the cells were affected. Antigen presentation, cell-mediated immune response, humoral immune response, and inflammatory response were most severely affected, followed by cellular movement, immune cell trafficking, immunological disease, cell-to-cell signaling and interaction, cell death, organ injury and abnormality, cell signaling, infectious disease, small molecular biochemistry, antimicrobial response, and free radical scavenging. Since rats must be immunosuppressed in order to develop Pneumocystis infection, alveolar macrophages from four rats of the same sex and age that were treated with dexamethasone for the entire eight weeks of the study period were also examined. With a filter of false-discovery rate less than 0.1 and fold change greater than 1.5, 200 genes were found to be up-regulated, and 144 genes were down-regulated by dexamethasone treatment. During Pneumocystis pneumonia, 115 genes were found to be up- and 137 were down-regulated with the same filtering criteria. The top ten genes up-regulated by Pneumocystis infection were Cxcl10, Spp1, S100A9, Rsad2, S100A8, Nos2, RT1-Bb, Lcn2, RT1-Db1, and Srgn with fold changes ranging between 12.33 and 5.34; and the top ten down-regulated ones were Lgals1, Psat1, Tbc1d23, Gsta1, Car5b, Xrcc5, Pdlim1, Alcam, Cidea, and Pkib with fold changes ranging between -4.24 and -2.25.

Conclusions

In order to survive in the host, Pneumocystis organisms change the expression profile of alveolar macrophages. Results of this study revealed that Pneumocystis infection affects many cellular functions leading to reduced number and activity of alveolar macrophages during Pneumocystis pneumonia.
  相似文献   

11.
ABSTRACT. Pneumocandins inhibit β‐1,3‐glucan synthesis preventing the development of Pneumocystis cysts that are absent from the lungs of treated rats. To determine whether treated trophozoites are capable of DNA replication, cytochemical analyses were performed on 4′,6‐diamidino‐2‐phenylindole (DAPI)‐ and DB181‐stained Pneumocystis carinii isolated from pneumocandin L‐693‐989‐treated rats. Fluorescence intensities of trophozoite nuclei from drug‐treated rats were greater than those of untreated controls, suggesting that DNA replication was not inhibited but that cytokinesis and perhaps karyokinesis were blocked.  相似文献   

12.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

13.

Background

Pneumocystis jirovecii remains an important cause of fatal pneumonia (Pneumocystis pneumonia or PcP) in HIV+ patients and other immunocompromised hosts. Despite many previous attempts, a clinically useful serologic test for P. jirovecii infection has never been developed.

Methods/Principal Findings

We analyzed serum antibody responses to the P. jirovecii major surface glycoprotein recombinant fragment C1 (MsgC1) in 110 HIV+ patients with active PcP (cases) and 63 HIV+ patients with pneumonia due to other causes (controls) by an enzyme-linked immunosorbent assay (ELISA). The cases had significantly higher IgG and IgM antibody levels to MsgC1 than the controls at hospital admission (week 0) and intervals up to at least 1 month thereafter. The sensitivity, specificity and positive predictive value (PPV) of IgG antibody levels increased from 57.2%, 61.7% and 71.5% at week 0 to 63.4%, 100%, and 100%, respectively, at weeks 3–4. The sensitivity, specificity and PPV of IgM antibody levels rose from 59.7%, 61.3%, and 79.3% at week 0 to 74.6%, 73.7%, and 89.8%, respectively, at weeks 3–4. Multivariate analysis revealed that a diagnosis of PcP was the only independent predictor of high IgG and IgM antibody levels to MsgC1. A high LDH level, a nonspecific marker of lung damage, was an independent predictor of low IgG antibody levels to MsgC1.

Conclusions/Significance

The results suggest that the ELISA shows promise as an aid to the diagnosis of PCP in situations where diagnostic procedures cannot be performed. Further studies in other patient populations are needed to better define the usefulness of this serologic test.  相似文献   

14.
Major surface glycoprotein (Msg), the most abundant cell surface protein of Pneumocystis, plays an important role in the interaction of this opportunistic pathogen with host cells, and its potential for antigenic variation may facilitate evasion of host immune responses. In the present study, we have identified and characterized the promoter region of msg in 3 species of Pneumocystis: P. carinii, P. jirovecii, and P. murina. Because Pneumocystis cannot be cultured, promoter activity was measured in Saccharomyces cerevisiae, a related fungus, using a yeast vector modified to utilize the gene coding for Renilla luciferase as a reporter gene. The 5′-flanking sequences of msg from all three Pneumocystis species showed considerable promoter activity, with increases in luciferase activity up to 15- to 44-fold above baseline. Progressive deletions helped define an ∼13-bp sequence in each Pneumocystis species that appears to be critical for promoter activity. Electrophoretic mobility shift analysis using P. carinii-specific msg promoter sequences demonstrated binding of nuclear proteins of S. cerevisiae. The 144-bp 5′-flanking region of P. murina msg showed 72% identity to that of P. carinii. The 5′-flanking region of P. jirovecii msg showed 58 and 61% identity to those of P. murina and P. carinii, respectively. The msg promoter is a good candidate for inclusion in a construct designed for genetic manipulation of Pneumocystis species.  相似文献   

15.
BackgroundPneumocystis jirovecii primary infection occurs asymptomatically before 6 months of age, suggesting that the infection is acquired very early in life. Furthermore, Pneumocystis pneumonia has been described in newborns, which emphasizes the importance of studying Pneumocystis colonization in mother-infant pairs.AimsTo evaluate the prevalence of Pneumocystis colonization among pregnant women and to determine the potential transplacental transmission.MethodsA cross-sectional study was carried out on HIV-negative women over 18 years-old, and 37 or more weeks of pregnancy attending Hospital Cayetano Heredia Maternity unit during 2016-2017. Clinical and demographical information was collected on them and their newborns. Oropharyngeal washes, nasal swabs, and placenta samples were collected from women, as well as a nasopharyngeal aspirate and nasal swab from newborns. All respiratory samples were analysed by nested-PCR for the detection of Pneumocystis. Placenta samples from women with a positive PCR result in their respiratory samples were also analysed by nested-PCR.ResultsOf the 92 pregnant women included, five of them (5.43%) were colonized by Pneumocystis. Pneumocystis DNA was not found in any of the 87 available newborn samples or in the placentas of the five women who had a positive result by PCR in their upper respiratory samples.ConclusionsIt was found that 5.43% of the pregnant women were colonized by Pneumocystis, there was no evidence of any role of this colonization in the transmission to their newborns, since none of them tested positive for Pneumocystis.  相似文献   

16.
To determine if myeloid differentiation factor 88 (MyD88), which is necessary for signaling by most TLRs and IL-1Rs, is necessary for control of Pneumocystis infection, MyD88-deficient and wild-type mice were infected with Pneumocystis by exposure to infected seeder mice and were followed for up to 106 days. MyD88-deficient mice showed clearance of Pneumocystis and development of anti-Pneumocystis antibody responses with kinetics similar to wild-type mice. Based on expression levels of select genes, MyD88-deficient mice developed immune responses similar to wild-type mice. Thus, MyD88 and the upstream pathways that rely on MyD88 signaling are not required for control of Pneumocystis infection.  相似文献   

17.
Pneumocystis fungi represent a highly diversified biological group with numerous species, which display a strong host-specificity suggesting a long co-speciation process. In the present study, the presence and genetic diversity of Pneumocystis organisms was investigated in 203 lung samples from woodmice (Apodemus sylvaticus) collected on western continental Europe and Mediterranean islands. The presence of Pneumocystis DNA was assessed by nested PCR at both large and small mitochondrial subunit (mtLSU and mtSSU) rRNA loci. Direct sequencing of nested PCR products demonstrated a very high variability among woodmouse-derived Pneumocystis organisms with a total number of 30 distinct combined mtLSU and mtSSU sequence types. However, the genetic divergence among these sequence types was very low (up to 3.87%) and the presence of several Pneumocystis species within Apodemus sylvaticus was considered unlikely. The analysis of the genetic structure of woodmouse-derived Pneumocystis revealed two distinct groups. The first one comprised Pneumocystis from woodmice collected in continental Spain, France and Balearic islands. The second one included Pneumocystis from woodmice collected in continental Italy, Corsica and Sicily. These two genetic groups were in accordance with the two lineages currently described within the host species Apodemus sylvaticus. Pneumocystis organisms are emerging as powerful tools for phylogeographic studies in mammals.  相似文献   

18.
As an important opportunistic pulmonary pathogen, Pneumocystis carinii has been the focus of extensive research over the decades. The use of laboratory animal models has permitted a detailed understanding of the host–parasite interaction but an understanding of the basic biology of P. carinii has lagged due in large part to the inability of the organism to grow well in culture and to the lack of a tractable genetic system. Molecular techniques have demonstrated extensive heterogeneity among P. carinii organisms isolated from different host species. Characterization of the genes and genomes of the Pneumocystis family has supported the notion that the family comprises different species rather than strains within the genus Pneumocystis and contributed to the understanding of the pathophysiology of infection. Many of the technical obstacles in the study of the organisms have been overcome in the past decade and the pace of research into the basic biology of the organism has accelerated. Biochemical pathways have been inferred from the presence of key enzyme activities or gene sequences, and attempts to dissect cellular pathways have been initiated. The Pneumocystis genome project promises to be a rich source of information with regard to the functional activity of the organism and the presence of specific biochemical pathways. These advances in our understanding of the biology of this organism should provide for future studies leading to the control of this opportunistic pathogen.  相似文献   

19.
Pneumocystis jirovecii (PCP) remains a significant cause of mortality and morbidity in patients with respiratory infections. Accurate diagnosis of PCP is still a diagnostic challenge. Hence, the main objectives were to study the incidence of Pneumocystis Jirovecii pneumonia infection among respiratory problems patients and to compare the real-time quantitative PCR technique with various diagnostic methodologies. Patients who have respiratory symptoms of PCP like breathlessness, cough, and fever were enrolled. Bronchoalveolar lavage (BAL) samples were collected and homogenized, and then smears were prepared for examination by Gomorimethanamine silver staining (GMSS), Immunofluorescent staining (IFAT), Toludine blue O (TBO), and Giemsa staining. Further, RT-PCR was also performed for the detection of PCP. The mean patients’ age was 52 (SD ± 16) years. 41% were female, and 59% of the patients were male. Weight loss (80%), fever (92%), cough (100%), and dyspnea (76%) were the most common complaints. Twenty-eight patients have been diagnosed with pulmonary infiltrates using chest X-ray. Out of 100 patients, 35% were positive for PCP. The organism was detected using IFAT in all the 35 specimens, 15 of 35 (42.86%) by GMSS, 8 of 35 (17.6%) by Giemsa stain, and 1 of 35 (2.8%) was detected by TBO stains. RT-PCR showed that 39 patients was found to be positive for PCP. Thirty-five of these 39 patients had a positive IFAT (89.74%); the IFAT was negative or undefined in 4 samples. All 39 patients (100%) had signs and symptoms for PCP. Our results suggest that RT-PCR is still the most highly sensitive method for Pneumocystis Jirovecii detection. In poor resource settings where RT-PCR and IFAT is not available, diagnosis of Pneumocystis jirovecii pneumonia remains a complicated issue. In settings where RT-PCR & IFAT are not available, GMSS staining may be the next best choice to detect PCP.  相似文献   

20.
The AIDS‐associated lung pathogen Pneumocystis is classified as a fungus although Pneumocystis has several distinct features such as the absence of ergosterol, the major sterol of most fungi. The Pneumocystis carinii S‐adenosylmethionine:sterol C24‐methyltransferase (SAM:SMT) enzyme, coded by the erg6 gene, transfers either one or two methyl groups to the C‐24 position of the sterol side chain producing both C28 and C29 24‐alkylsterols in approximately the same proportions, whereas most fungal SAM:SMT transfer only one methyl group to the side chain. The sterol compositions of wild‐type Sacchromyces cerevisiae, the erg6 knockout mutant (Δerg6), and Δerg6 expressing the P. carinii or the S. cerevisiae erg6 gene were analyzed by a variety of chromatographic and spectroscopic procedures to examine functional complementation in the yeast expression system. Detailed sterol analyses were obtained using high performance liquid chromatography and proton nuclear magnetic resonance spectroscopy (1H‐NMR). The P. carinii SAM:SMT in the Δerg6 restored its ability to produce the C28 sterol ergosterol as the major sterol, and also resulted in low levels of C29 sterols. This indicates that while the P. carinii SAM:SMT in the yeast Δerg6 cells was able to transfer a second methyl group to the side chain, the action of Δ24(28)‐sterol reductase (coded by the erg4 gene) in the yeast cells prevented the formation and accumulation of as many C29 sterols as that found in P. carinii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号