首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been identified in the human intervertebral disc (IVD) and have been implicated in the mechanisms associated with nerve ingrowth and nociception in degeneration of the IVD. The aim of the current study was to investigate an association between neurotrophin expression in the IVD and the severity of disc degeneration, including the effect of disc-related proinflammatory cytokines on neurotrophin and neuropeptide expression in cells derived from the human IVD.

Methods

Immunohistochemical analysis was performed to examine the expression of NGF, BDNF and their high-affinity receptors Trk-A and Trk-B in human IVD samples, divided into three categories: non-degenerate, moderate degeneration and severe degeneration. In order to study the effect of disc-related cytokines on neurotrophin/neuropeptide gene expression, nucleus pulposus cells derived from non-degenerate and degenerate IVD samples were seeded in alginate and were stimulated with either IL-1β or TNFα for 48 hours. RNA was extracted, cDNA was synthesised and quantitative real-time PCR was performed to examine the expression of NGF, BDNF and substance P.

Results

Immunohistochemistry showed expression of NGF and BDNF in the native chondrocyte-like cells in all regions of the IVD and in all grades of degeneration. Interestingly only BDNF significantly increased with the severity of degeneration (P < 0.05). Similar expression was observed for Trk-A and Trk-B, although no association with disease severity was demonstrated. In cultured human nucleus pulposus cells, stimulation with IL-1β led to significant increases in NGF and BDNF gene expression (P < 0.05). Treatment with TNFα was associated with an upregulation of substance P expression only.

Conclusion

Our findings show that both the annulus fibrosus and nucleus pulposus cells of the IVD express the neurotrophins NGF and BDNF, factors that may influence and enhance innervation and pain in the degenerate IVD. Expression of Trk-A and Trk-B by cells of the nondegenerate and degenerate IVD suggests an autocrine role for neurotrophins in regulation of disc cell biology. Furthermore, modulation of neurotrophin expression by IL-1β and modulation of substance P expression by TNFα, coupled with their increased expression in the degenerate IVD, highlights novel roles for these cytokines in regulating nerve ingrowth in the degenerate IVD and associated back pain.  相似文献   

2.

Introduction  

Chronic and debilitating low back pain is a common condition and a huge economic burden. Many cases are attributed to age-related degeneration of the intervertebral disc (IVD); however, age-related degeneration appears to occur at an accelerated rate in some individuals. We have previously demonstrated biomarkers of cellular senescence within the human IVD and suggested a role for senescence in IVD degeneration. Senescence occurs with ageing but can also occur prematurely in response to stress. We hypothesised that stress-induced premature senescence (SIPS) occurs within the IVD and here we have investigated the expression and production of caveolin-1, a protein that has been shown previously to be upregulated in SIPS.  相似文献   

3.

Introduction  

Matrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP).  相似文献   

4.

Introduction  

Earlier work indicates that the cholesterol-lowering drug, simvastatin, is anabolic to chondrogenic expression of rat intervertebral disc (IVD) cells, which suggests a potential role for simvastatin in IVD regeneration. In this study, we expand on our earlier work to test the effectiveness of simvastatin on disc degeneration utilizing a rat tail disc degeneration model.  相似文献   

5.

Introduction  

Fibroblast growth factor 2 (FGF2) is a growth factor that is immediately released after cartilage injury and plays a pivotal role in cartilage homeostasis. In human adult articular cartilage, FGF2 mediates anti-anabolic and potentially catabolic effects via the suppression of proteoglycan (PG) production along with the upregulation of matrix-degrading enzyme activity. The aim of the present study was to determine the biological effects of FGF2 in spine disc cells and to elucidate the complex biochemical pathways utilized by FGF2 in bovine intervertebral disc (IVD) cells in an attempt to further understand the pathophysiologic processes involved in disc degeneration.  相似文献   

6.
Intervertebral disc (IVD) degeneration is strongly associated with chronic low back pain, one of the most common causes of morbidity in the West. While normal healthy IVD is avascular, angiogenesis is a constant feature of IVD degeneration and has been shown to be associated with in-growth of nerves. Connective tissue growth factor (CTGF) plays a pivotal role in angiogenesis. To investigate the expression of CTGF in both normal and degenerated IVD, 21 IVDs were obtained from patients at surgery or postmortem examination and grouped according to the severity of histological degeneration. The immunohistochemical expression of CTGF was correlated with the degree of degeneration. CD31 immunohistochemistry was used to correlate IVD degeneration with vasculature. Our results showed that CTGF is expressed in non-degenerated and degenerated human IVDs and increased expression of CTGF is associated with degenerated discs, particularly within areas of neovascularization. We suggest that CTGF may play a role in angiogenesis in the human degenerated IVD.  相似文献   

7.
Degeneration of intervertebral disc (IVD) is mainly a chronic process of excessive destruction of the extracellular matrix (ECM), and also is thought to be the primary cause of low back pain. Presently, however, the underlying mechanism of IVD degeneration is still not elucidated. Cellular loss from cell death has been believed to contribute to the degradation of ECM and plays an important role in the process of IVD degeneration, but the mechanisms of cell death in degenerated IVD remain unclear. Apoptosis, a very important type of IVD cell death, has been considered to play a crucial role in the process of degeneration. Autophagy, a non-apoptosis death type of programmed cell death, has been considered extensively involved in many pathological and physiological processes, including the degenerative diseases. Thus, the research on cell death in IVD degeneration has become a new focus recently. In this review, by analyzing the available literature pertaining to cell death in IVD and discussing the inducing factors of IVD degeneration, NP cells and ECM in IVD degeneration, apoptotic signal transduction pathways involved in IVD cell death, the relationship of cell death with IVD degeneration and potential therapeutic strategy for IVD degeneration by regulating cell death, we conclude that different stimuli induce cell death in IVD via various signal transduction pathways, and that cell death may play a key role in the degenerative process of IVD. Regulation of cell death could be a potential and attractive therapeutic strategy for IVD degeneration.  相似文献   

8.

Introduction  

Intervertebral disc (IVD) degeneration is associated with proteolytic degradation of the extracellular matrix, and its repair requires both the production of extracellular matrix and the downregulation of proteinase activity. These properties are associated with several growth factors. However, the use of growth factors in clinical practice is limited by their high cost. This cost can be circumvented using synthetic peptides, such as Link N, which can stimulate the synthesis of proteoglycan and collagen by IVD cells in vitro. The purpose of the present study was to evaluate the effect of Link N in vivo in a rabbit model of IVD degeneration.  相似文献   

9.

Introduction

Intervertebral disc (IVD) degeneration is characterized by extracellular matrix breakdown and is considered to be a primary cause of discogenic back pain. Although increases in pro-inflammatory cytokine levels within degenerating discs are associated with discogenic back pain, the mechanisms leading to their overproduction have not yet been elucidated. As fragmentation of matrix components occurs during IVD degeneration, we assessed the potential involvement of hyaluronic acid fragments (fHAs) in the induction of inflammatory and catabolic mediators.

Methods

Human IVD cells isolated from patient biopsies were stimulated with fHAs (6 to 12 disaccharides) and their effect on cytokine and matrix degrading enzyme production was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The involvement of specific cell surface receptors and signal transduction pathways in mediating the effects of fHAs was tested using small interfering RNA (siRNA) approaches and kinase inhibition assays.

Results

Treatment of IVD cells with fHAs significantly increased mRNA expression levels of interleukin (IL)-, IL-6, IL-8, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-1 and -13. The stimulatory effects of fHAs on IL-6 protein production were significantly impaired when added to IVD cells in combination with either Toll-like receptor (TLR)-2 siRNA or a TLR2 neutralizing antibody. Furthermore, the ability of fHAs to enhance IL-6 and MMP-3 protein production was found to be dependent on the mitogen-activated protein (MAP) kinase signaling pathway.

Conclusions

These findings suggest that fHAs may have the potential to mediate IVD degeneration and discogenic back pain through activation of the TLR2 signaling pathway in resident IVD cells.  相似文献   

10.
The intervertebral disc (IVD) degeneration is thought to be closely related to ingrowth of new blood vessels. However, the impact of anti‐angiogenic factors in the maintenance of IVD avascularity remains unknown. Tenomodulin (Tnmd) is a tendon/ligament‐specific marker and anti‐angiogenic factor with abundant expression in the IVD. It is still unclear whether Tnmd contributes to the maintenance of IVD homeostasis, acting to inhibit vascular ingrowth into this normally avascular tissue. Herein, we investigated whether IVD degeneration could be induced spontaneously by the absence of Tnmd. Our results showed that Tnmd was expressed in an age‐dependent manner primarily in the outer annulus fibrous (OAF) and it was downregulated at 6 months of age corresponding to the early IVD degeneration stage in mice. Tnmd knockout (Tnmd?/?) mice exhibited more rapid progression of age‐related IVD degeneration. These signs include smaller collagen fibril diameter, markedly lower compressive stiffness, reduced multiple IVD‐ and tendon/ligament‐related gene expression, induced angiogenesis, and macrophage infiltration in OAF, as well as more hypertrophic‐like chondrocytes in the nucleus pulposus. In addition, Tnmd and chondromodulin I (Chm1, the only homologous gene to Tnmd) double knockout (Tnmd?/?Chm1?/?) mice displayed not only accelerated IVD degeneration, but also ectopic bone formation of IVD. Lastly, the absence of Tnmd in OAF‐derived cells promoted p65 and matrix metalloproteinases upregulation, and increased migratory capacity of human umbilical vein endothelial cells. In sum, our data provide clear evidences that Tnmd acts as an angiogenic inhibitor in the IVD homeostasis and protects against age‐related IVD degeneration. Targeting Tnmd may represent a novel therapeutic strategy for attenuating age‐related IVD degeneration.  相似文献   

11.

Introduction

Excessive mechanical loading of intervertebral discs (IVDs) is thought to alter matrix properties and influence disc cell metabolism, contributing to degenerative disc disease and development of discogenic pain. However, little is known about how mechanical strain induces these changes. This study investigated the cellular and molecular changes as well as which inflammatory receptors and cytokines were upregulated in human intervertebral disc cells exposed to high mechanical strain (HMS) at low frequency. The impact of these metabolic changes on neuronal differentiation was also explored to determine a role in the development of disc degeneration and discogenic pain.

Methods

Isolated human annulus fibrosus (AF) and nucleus pulposus (NP) cells were exposed to HMS (20% cyclical stretch at 0.001 Hz) on high-extension silicone rubber dishes coupled to a mechanical stretching apparatus and compared to static control cultures. Gene expression of Toll-like receptors (TLRs), neuronal growth factor (NGF) and tumour necrosis factor α (TNFα) was assessed. Collected conditioned media were analysed for cytokine content and applied to rat pheocromocytoma PC12 cells for neuronal differentiation assessment.

Results

HMS caused upregulation of TLR2, TLR4, NGF and TNFα gene expression in IVD cells. Medium from HMS cultures contained elevated levels of growth-related oncogene, interleukin 6 (IL-6), IL-8, IL-15, monocyte chemoattractant protein 1 (MCP-1), MCP-3, monokine induced by γ interferon, transforming growth factor β1, TNFα and NGF. Exposure of PC12 cells to HMS-conditioned media resulted in both increased neurite sprouting and cell death.

Conclusions

HMS culture of IVD cells in vitro drives cytokine and inflammatory responses associated with degenerative disc disease and low-back pain. This study provides evidence for a direct link between cellular strain, secretory factors, neoinnervation and potential degeneration and discogenic pain in vivo.  相似文献   

12.

Introduction

Brain-derived neurotrophic factor (BDNF) was first identified in the intervertebral disc (IVD) when its molecular upregulation was observed in sections of nucleus pulposus cultured under conditions of increased osmolarity. BDNF is now known to be involved in a number of biologic functions, including regulation of differentiation/survival of sensory neurons, regulation of nociceptive function and central pain modulation, and modulation of inflammatory pain hypersensitivity. In addition, more recent investigations show that BDNF can induce the recruitment of endothelial cells and the formation of vascular structures. The objectives of the present study were to use immunocytochemistry to determine the distribution of BDNF and its receptor (BDNF-tropomyosine receptor kinase B) in the human IVD, and to test for gene expression of BDNF and its receptor in cultured human annulus fibrosus cells.

Methods

We studied immunohistochemical localization of BDNF and its receptor in the human annulus, quantified the percentage of outer annulus and inner annulus cells and nucleus cells positive for BDNF immunolocalization, and studied the gene expression of BDNF and its receptor using microarray analysis.

Results

The percentage (mean ± standard error of the mean) of cells positive for BDNF localization was significantly greater in the outer annulus (32.3 ± 2.7%, n = 22) compared with either the inner annulus (8.1 ± 1.5%, n = 6) or the nucleus (10.4 ± 2.8%, n = 3) (P < 0.0001). BDNF-receptor immunolocalization showed a pattern similar to that of BDNF, but was not quantitatively assessed. BDNF gene expression levels from cultured annulus cells showed a significant positive correlation with increasing levels of IVD degeneration (P = 0.011).

Conclusion

These findings provide data on the presence of BDNF and its receptor in the human IVD at the translational level, and on the expression of BDNF and its receptor by cultured human annulus cells. Our findings point to the need for further studies to define the role of BDNF in the human IVD and to investigate regulatory events within the disc that control the expression of BDNF and its receptor.  相似文献   

13.

Introduction  

The decreased disc height characteristic of intervertebral disc (IVD) degeneration has often been linked to low back pain, and thus regeneration strategies aimed at restoring the disc extracellular matrix and ultimately disc height have been proposed as potential treatments for IVD degeneration. One such therapy under investigation by a number of groups worldwide is the use of autologous mesenchymal stem cells (MSCs) to aid in the regeneration of the IVD extracellular matrix. To date, however, the optimum method of application of these cells for regeneration strategies for the IVD is unclear, and few studies have investigated the direct injection of MSCs alone into IVD tissues. In the present article, we investigated the survival and phenotype of human MSCs, sourced from aged individuals, following injection into nucleus pulposus (NP) tissue explant cultures.  相似文献   

14.

Introduction

Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration.

Methods

Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age.

Results

Early IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells.

Conclusions

Early IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration.  相似文献   

15.

Introduction  

The avascular nature of the human intervertebral disc (IVD) is thought to play a major role in disc pathophysiology by limiting nutrient supply to resident IVD cells. In the human IVD, the central IVD cells at maturity are normally chondrocytic in phenotype. However, abnormal cell phenotypes have been associated with degenerative disc diseases, including cell proliferation and cluster formation, cell death, stellate morphologies, and cell senescence. Therefore, we have examined the relative influence of possible blood-borne factors on the growth characteristics of IVD cells in vitro.  相似文献   

16.

Background

The Dachshund is a chondrodystrophic breed of dog predisposed to premature degeneration and calcification, and subsequent herniation, of intervertebral discs (IVDs). This condition is heritable in Dachshunds and breeding candidates are screened for radiographically detectable intervertebral disc calcification (RDIDC), a feature of advanced disc degeneration and a prognostic factor for clinical disease. RDIDC scoring has been previously shown to be consistent within scorers; however, strong scorer effect (subjectivity) was also reported. The aim of this study was to estimate the within- and between-scorer agreement (repeatability and reproducibility, respectively) of computed tomography (CT) scanning and magnetic resonance imaging (MRI) for scoring IVD calcification, and to compare these modalities with radiographic scoring.

Results

Twenty-one Dachshund dogs were screened for IVD calcification using the three imaging modalities. Three scorers scored each case twice, independently. Repeatability was highest for radiography (95.4%), and significantly higher than for CT (90.4%) but not MRI (93.8%). Reproducibility was also highest for radiography (92.9%), but not significantly higher than for CT or MRI (89.4% and 86.4%, respectively). Overall, CT scored IVDs differently than radiography and MRI (64.8% and 62.7% agreement, respectively), while radiography and MRI scored more similarly (85.7% agreement).

Conclusions

Despite high precision for radiography, previous evidence of scorer subjectivity was confirmed, which was not generally observed with CT and MRI. The increased consistency of radiography may be related to prior scorer experience with the modality and RDIDC scoring. This study does not support replacing radiography with CT or MRI to screen for heritable IVD calcification in breeding Dachshunds; however, evaluation of dog-level precision and the accuracy of each modality is recommended.
  相似文献   

17.
The intervertebral disc (IVD) receives important nutrients, such as glucose, from surrounding blood vessels. Poor nutritional supply is believed to play a key role in disc degeneration. Several investigators have presented finite element models of the IVD to investigate disc nutrition; however, none has predicted nutrient levels and cell viability in the disc with a realistic 3D geometry and tissue properties coupled to mechanical deformation. Understanding how degeneration and loading affect nutrition and cell viability is necessary for elucidating the mechanisms of disc degeneration and low back pain. The objective of this study was to analyze the effects of disc degeneration and static deformation on glucose distributions and cell viability in the IVD using finite element analysis. A realistic 3D finite element model of the IVD was developed based on mechano-electrochemical mixture theory. In the model, the cellular metabolic activities and viability were related to nutrient concentrations, and transport properties of nutrients were dependent on tissue deformation. The effects of disc degeneration and mechanical compression on glucose concentrations and cell density distributions in the IVD were investigated. To examine effects of disc degeneration, tissue properties were altered to reflect those of degenerated tissue, including reduced water content, fixed charge density, height, and endplate permeability. Two mechanical loading conditions were also investigated: a reference (undeformed) case and a 10% static deformation case. In general, nutrient levels decreased moving away from the nutritional supply at the disc periphery. Minimum glucose levels were at the interface between the nucleus and annulus regions of the disc. Deformation caused a 6.2% decrease in the minimum glucose concentration in the normal IVD, while degeneration resulted in an 80% decrease. Although cell density was not affected in the undeformed normal disc, there was a decrease in cell viability in the degenerated case, in which averaged cell density fell 11% compared with the normal case. This effect was further exacerbated by deformation of the degenerated IVD. Both deformation and disc degeneration altered the glucose distribution in the IVD. For the degenerated case, glucose levels fell below levels necessary for maintaining cell viability, and cell density decreased. This study provides important insight into nutrition-related mechanisms of disc degeneration. Moreover, our model may serve as a powerful tool in the development of new treatments for low back pain.  相似文献   

18.

Introduction  

Loss of intervertebral disc (IVD) matrix and ultimately disc height as a result of 'degeneration' has been implicated as a major cause of low back pain (LBP). The use of anabolic growth factors as therapies to regenerate IVD matrix, hence restoring disc height and thus reversing degenerative disc disease, has been suggested. Cartilage-derived morphogenetic protein (CDMP) is a growth factor which stimulates proteoglycan production in chondrocyte-like cells and thus could be a useful growth factor for LBP therapies. However, little is known about the expression of CDMP or its receptor in human IVD, nor its effects on human disc cells.  相似文献   

19.

Introduction

Biglycan is an important proteoglycan of the extracellular matrix of intervertebral disc (IVD), and its decrease with aging has been correlated with IVD degeneration. Biglycan deficient (Bgn−/0) mice lack this protein and undergo spontaneous IVD degeneration with aging, thus representing a valuable in vivo model for preliminary studies on therapies for human progressive IVD degeneration. The purpose of the present study was to assess the possible beneficial effects of adipose-derived stromal cells (ADSCs) implants in the Bgn−/0 mouse model.

Methods

To evaluate ADSC implant efficacy, Bgn−/0 mice were intradiscally (L1-L2) injected with 8x104 ADSCs at 16 months old, when mice exhibit severe and complete IVD degeneration, evident on both 7Tesla Magnetic Resonance Imaging (7TMRI) and histology. Placebo and ADSCs treated Bgn−/0 mice were assessed by 7TMRI analysis up to 12 weeks post-transplantation. Mice were then sacrificed and implanted discs were analyzed by histology and immunohistochemistry for the presence of human cells and for the expression of biglycan and aggrecan in the IVD area.

Results

After in vivo treatment, 7TMRI revealed evident increase in signal intensity within the discs of mice that received ADSCs, while placebo treatment did not show any variation. Ultrastructural analyses demonstrated that human ADSC survival occurred in the injected discs up to 12 weeks after implant. These cells acquired a positive expression for biglycan, and this proteoglycan was specifically localized in human cells. Moreover, ADSC treatment resulted in a significant increase of aggrecan tissue levels.

Conclusion

Overall, this work demonstrates that ADSC implant into degenerated disc of Bgn−/0 mice ameliorates disc damage, promotes new expression of biglycan and increased levels of aggrecan. This suggests a potential benefit of ADSC implant in the treatment of chronic degenerative disc disease and prompts further studies in this field.  相似文献   

20.

Introduction  

Nucleus pulposus (NP) cells have a phenotype similar to articular cartilage (AC) cells. However, the matrix of the NP is clearly different to that of AC suggesting that specific cell phenotypes exist. The aim of this study was to identify novel genes that could be used to distinguish bovine NP cells from AC and annulus fibrosus (AF) cells, and to further determine their expression in normal and degenerate human intervertebral disc (IVD) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号