首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Multipotent adult germline stem cells (maGSCs) are pluripotent cells that can be differentiated into somatic cells of the three primary germ layers. To highlight the protein profile changes associated with stem cell differentiation, retinoic acid (RA) treated mouse stem cells (maGSCs and ESCs) were compared to nontreated stem cells. 2-DE and DIGE reference maps were created, and differentially expressed proteins were further processed for identification. In both stem cell types, the RA induced differentiation resulted in an alteration of 36 proteins of which 18 were down-regulated and might be potential pluripotency associated proteins, whereas the other 18 proteins were up-regulated. These might be correlated to stem cell differentiation. Surprisingly, eukaryotic initiation factor 5A (Eif5a), a protein which is essential for cell proliferation and differentiation, was significantly down-regulated under RA treatment. A time-dependent investigation of Eif5a showed that the RA treatment of stem cells resulted in a significant up-regulation of the Eif5a in the first 48 h followed by a progressive down-regulation thereafter. This effect could be blocked by the hypusination inhibitor ciclopirox olamine (CPX). The alteration of Eif5a hypusination, as confirmed by mass spectrometry, exerts an antiproliferative effect on ESCs and maGSCs in vitro, but does not affect the cell pluripotency. Our data highlights the important role of Eif5a and its hypusination for stem cell differentiation and proliferation.  相似文献   

3.
Retinoic acid (RA) induces the differentiation of F9 cells cultured as monolayers into primitive endodermal-like cells, whereas a combination of RA and cAMP leads to parietal endodermal differentiation. In RA receptor alpha-null F9 cells (RARalpha-/- cells), RA still efficiently triggers RARgamma-mediated primitive endodermal differentiation, but parietal endodermal differentiation is markedly delayed. To investigate the role of RARalpha1 activation functions AF-1 and AF-2 and of their phosphorylation sites during RA- and cAMP-induced parietal differentiation, cell lines reexpressing WT or mutated RARalpha1 were established in RARalpha-/- cells. We have found that the protein kinase A (PKA) phosphorylation site and the AF-2AD core (helix 12) of RARalpha1 are required for efficient parietal endodermal differentiation, whereas the AF-1 proline-directed kinase phosphorylation site is dispensible. Interestingly, deletion of the AF-1 activating domain (the A/B region), but not of the AF-2AD core, generates a dominant negative mutant that abrogates primitive endodermal differentiation when expressed in RARalpha-/- cells. We also show that the RARalpha AF-1 and AF-2 activation functions, but not their phosphorylation sites, are involved in the induction of RA-responsive genes in a differential promoter context-dependent manner.  相似文献   

4.
Aggregation of P19 embryonal carcinoma cells in the presence of a factor, secreted by the visceral endoderm-like cell line END-2, induces differentiation to cell types including visceral endoderm, mesoderm-derived muscle tissue and neurons. This factor is different from activin A, type beta transforming growth factors (TGF beta) and fibroblast growth factors (FGF) although its acid- and heat-lability and its stability in the presence of reducing agents resemble the properties of the FGFs. The END-2 factor is completely inhibited in its action by activin A. This inhibitory effect of activin A is not specific for the END-2 factor as retinoic acid (RA)-induced differentiation of aggregated P19 EC cells into neurons (10(-8) M RA) or mesoderm-derived muscle tissue (10(-9) M RA) is also completely inhibited by activin A. The results of this study suggest that the END-2 activity and activin A are intimately involved in the induction and regulation, respectively, of early differentiation processes in vertebrate embryogenesis.  相似文献   

5.
The differentiation of human mesenchymal stem cells (hMSCs) into neural cells in vitro provides a potential tool to be utilized for cell therapy of neurodegenerative disorders. Although previous studies repeated different protocols for the induction of neural cells from hMSCs in vitro, the results were not in complete agreement. In this study, we have attempted to compare three of these neural induction methods; retinoic acid (RA) treatment, RA treatment in serum reduced conditions, and treatment using other chemical compounds (dimethyl sulfoxide and potassium chloride) along with RA by real-time cell analysis and immunofluorescent staining of neural markers. RA treatment led to a slow progression of cells into neural-like morphology with the expression of neural protein neurofilament whereas reducing serum during RA treatment caused a much more extended differentiation process. Additionally, neural-like morphology was persistent in the later periods of differentiation in RA treatment. On the other hand, chemical induction caused cell shrinkages mimicking neural-like morphology in a short time and loss of this morphology along with increased cell death in later periods. Among the three methods compared, RA treatment was the most reliable one in terms of stability of differentiation and neural protein expressions.  相似文献   

6.
Embryonic stem (ES) cells have been tested for potential cell transplantation therapy for CNS disorders. Understanding their differentiation mechanism and identifying factors involved in driving excitatory and inhibitory neuron lineages should enhance the efficacy and efficiency of the cell transplantation therapy. We tested the hypothesis that selective expression of Src family tyrosine kinases is required for phenotype-specific differentiation and functional maturation of ES cell derived neurons. Cultured mouse pluripotent ES cells were treated with retinoic acid (RA) to induce neural differentiation. After RA induction, neurons derived from ES cells showed significant neurite growth, increased expression of Src, Fyn and Lck and an extension of Src kinase expression from cell body to neurite processes. ES cell derived neuron-like cells expressed neurofilament, synaptophysin, glutamate receptors, NMDA and kainate currents, became vulnerable to excitotoxicity and formed functional excitatory synapses. These developmental events were blocked or attenuated when cells were grown in the presence of Src family kinase inhibitor PP2. However, there was no change in the expression of GABAergic-specific protein GAD67 during PP2 treatment. Our data suggest that Src tyrosine kinases are involved in the terminal differentiation of excitatory neuronal phenotype during ES cell neural differentiation after RA induction.  相似文献   

7.
Pluripotent stem cell lines have been generated in several domestic animal species; however, these lines traditionally show poor self-renewal and differentiation. Using canine embryonic stem cell (cESC) lines previously shown to have sufficient self-renewal capacity and potency, we generated and compared canine neural stem cell (cNSC) lines derived by lineage selection with epidermal growth factor (EGF) or Noggin along the neural default differentiation pathway, or by directed differentiation with retinoic acid (RA)-induced floating sphere assay. Lineage selection produced large populations of SOX2+ neural stem/progenitor cell populations and neuronal derivatives while directed differentiation produced few and improper neuronal derivatives. Primary canine neural lines were generated from fetal tissue and used as a positive control for differentiation and electrophysiology. Differentiation of EGF- and Noggin-directed cNSC lines in N2B27 with low-dose growth factors (BDNF/NT-3 or PDGFαα) produced phenotypes equivalent to primary canine neural cells including 3CB2+ radial progenitors, MOSP+ glia restricted precursors, VIM+/GFAP+ astrocytes, and TUBB3+/MAP2+/NFH+/SYN+ neurons. Conversely, induction with RA and neuronal differentiation produced inadequate putative neurons for further study, even though appropriate neuronal gene expression profiles were observed by RT-PCR (including Nestin, TUBB3, PSD95, STX1A, SYNPR, MAP2). Co-culture of cESC-derived neurons with primary canine fetal cells on canine astrocytes was used to test functional maturity of putative neurons. Canine ESC-derived neurons received functional GABA(A)- and AMPA-receptor mediated synaptic input, but only when co-cultured with primary neurons. This study presents established neural stem/progenitor cell populations and functional neural derivatives in the dog, providing the proof-of-concept required to translate stem cell transplantation strategies into a clinically relevant animal model.  相似文献   

8.
Homeostasis of tissues relies on the regulated differentiation of stem cells. In the epithelium of mouse seminiferous tubules, the differentiation process from undifferentiated spermatogonia (A(undiff)), which harbor the stem cell functions, to sperm occurs in a periodical manner, known as the "seminiferous epithelial cycle". To identify the mechanism underlying this periodic differentiation, we investigated the roles of Sertoli cells (the somatic supporting cells) and retinoic acid (RA) in the seminiferous epithelial cycle. Sertoli cells cyclically change their functions in a coordinated manner with germ cell differentiation and support the entire process of spermatogenesis. RA is known to play essential roles in this periodic differentiation, but its precise mode of action and its regulation remains largely obscure. We showed that an experimental increase in RA signaling was capable of both inducing A(undiff) differentiation and resetting the Sertoli cell cycle to the appropriate stage. However, these actions of exogenous RA signaling on A(undiff) and Sertoli cells were strongly interfered by the differentiating germ cells of intimate location. Based on the expression of RA metabolism-related genes among multiple cell types - including germ and Sertoli cells - and their regulation by RA signaling, we propose here that differentiating germ cells play a primary role in modulating the local RA metabolism, which results in the timed differentiation of A(undiff) and the appropriate cycling of Sertoli cells. Similar regulation by differentiating progeny through the modulation of local environment could also be involved in other stem cell systems.  相似文献   

9.
Bone morphogenetic protein 4 (BMP4) and retinoic acid (RA) signaling are the key regulators for germ cell and meiosis induction, respectively. Gonadal tissue also provides an appropriate microenvironment for oocyte differentiation in vivo. The current study aimed to determine whether mimicking in vivo niche is more efficient for oocyte differentiation from embryonic stem (ES) cells. Here, differentiation of mouse ES cells toward oocyte‐like cells using embryoid body (EB) and monolayer protocols was induced in the presence (+BMP4) or absence (‐BMP4) of BMP4. On day 5, each group was co‐cultured with ovarian somatic cells in the presence or absence of RA (+RA or –RA) for an additional 14 days. Our results showed a significant increase in expression of meiotic markers in the +BMP4 condition in EB differentiation protocol. Further differentiation with ovarian somatic cells led to a subpopulation of oocyte‐like cell formation. Compared to the controls, the +RA condition resulted in a significant elevation of the meiotic gene expression in contrast to Oct4 that significantly decreased in both protocols. In the cells pre‐treated with BMP4 and then exposed to RA in the monolayer differentiation protocol, the gene expression levels of germ cell, Mvh, and maturation markers, Cx37, Zp2, and Gdf9, were also upregulated significantly. Therefore, it can be concluded that +BMP4 and +RA along with ovarian somatic cell co‐culture improved the rate of in vitro oocyte differentiation.  相似文献   

10.
Human embryonal carcinoma (EC) cells represent the stem cells of testicular germ cell tumours (TGCTs) and are morphologically, antigenically and functionally related to the stem cells of early mammalian embryos. Despite the large capacity for differentiation displayed by TGCT stem cells, little is known of the factors controlling their developmental potency. We have analyzed the differentiation elicited in NT2D1 human embryonal carcinoma (EC) cells by Bone Morphogenetic Proteins (BMPs) and compared it with that elicited by retinoic acid (RA). We have found that while RA induced expression of neuronal, endodermal and epithelial markers in NT2D1 human EC cells, treatment with BMPs resulted in a predominantly epithelial phenotype. We also provide evidence to suggest that at least some of the effects elicited by RA in human EC cells might be mediated through RA-induced expression of BMP-7. Thus BMPs may play an important role in specifying the type of differentiation arising from human multipotent stem cells. The manipulation of BMP signalling in human embryonic multipotent stem cells may therefore prove a useful approach in attempts to generate specific differentiated cell types in vitro, and loss of the malignant and/or transformed phenotype.  相似文献   

11.
Recombinant human leukocyte interferon (IFN-alpha A) inhibits growth of the human promyelocytic leukemic cell line HL-60 without inducing these cells to differentiate terminally. When IFN-alpha A is combined with agents capable of inducing differentiation in HL-60 cells, such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA), cis or trans retinoic acid (RA) or dimethylsulfoxide (DMSO), growth suppression and induction of differentiation are dramatically increased. By growing HL-60 cells in increasing concentrations of TPA, RA, or DMSO, a series of sublines have been developed which are resistant to the usual growth inhibition and induction of differentiation seen when wild type HL-60 cells are exposed to these agents. Treatment of these resistant HL-60 cells with the combination of IFN-alpha A and the appropriate inducer results, however, in a synergistic suppression in cell growth and a concomitant induction of terminal differentiation. The ability of interferon to interact synergistically with agents which promote leukemic cell maturation may represents a novel means of reducing resistant leukemic cell populations.  相似文献   

12.
The appearance of differentiated cells in embryonal carcinoma (EC) cultures can be inhibited by culturing the cells on fibroblast feeder layers. To determine whether or not feeder layers act by increasing the probability of stem cell renewal, growth and differentiation were monitored in cultures of F9 (subclone OTF9 -63) EC cells exposed to retinoic acid (RA) in either the presence or absence of feeder layers. By measuring the fraction of laminin-positive TROMA 1-positive or alkaline phosphatase-negative cells, it was determined that the frequency of differentiated cells in RA-treated F9 cultures was reduced by 70-80% when cells were cultured on fibroblast feeder layers instead of gelatin-coated dishes. Experiments in which EC cells were cultured in close proximity to a feeder layer demonstrated that cell-cell contact was required for maximal inhibition of differentiation. The probability of stem cell renewal was determined by measuring the number of colony-forming cells in RA-treated cultures as a function of time. Analysis of the data demonstrated that the probabilities of stem cell renewal were 0.5 and 0.25 during the first and second 48 h periods, respectively, following addition of RA for cells cultured without feeder layers. Cultures maintained on feeder layers exhibited a stem cell renewal probability of 0.72. Thus, feeder layers reduce the frequency of differentiated cells in RA-treated cultures by increasing the probability of stem cell renewal. Determining the mechanism by which feeder layers counteract the effect of a chemically defined differentiation inducer should help to uncover the processes that regulate the probability of stem cell renewal.  相似文献   

13.
Pericyte perivascular cells, believed to originate mesenchymal stem cells (MSC), are characterized by their capability to differentiate into various phenotypes and participate in tissue reconstruction of different organs, including the brain. We show that these cells can be induced to differentiation into neural-like phenotypes. For these studies, pericytes were obtained from aorta ex-plants of Sprague-Dawley rats and differentiated into neural cells following induction with trans retinoic acid (RA) in serum-free defined media or differentiation media containing nerve growth and brain-derived neuronal factor, B27, N2, and IBMX. When induced to differentiation with RA, cells express the pluripotency marker protein stage-specific embryonic antigen-1, neural-specific proteins β3-tubulin, neurofilament-200, and glial fibrillary acidic protein, suggesting that pericytes undergo differentiation, similar to that of neuroectodermal cells. Differentiated cells respond with intracellular calcium transients to membrane depolarization by KCl indicating the presence of voltage-gated ion channels and express functional N-methyl-D-aspartate receptors, characteristic for functional neurons. The study of neural differentiation of pericytes contributes to the understanding of induction of neuroectodermal differentiation as well as providing a new possible stem-cell source for cell regeneration therapy in the brain.  相似文献   

14.
Mouse embryonic stem (ES) cells can be differentiated in vitro into near homogeneous populations of both neurons and skeletal muscle as well as other cell types. We previously showed that treatment of pluripotent ES cells with retinoic acid (RA) induced differentiation into highly enriched populations of gamma-aminobutyric acid (GABA) expressing neurons. The reasons for generation of only GABA neurons as opposed to other neuronal cell types were not known. We have extended our previous work and now show that with RA induction of ES cells we not only obtain GABA neurons, but also dopaminergic neurons. Critical for the production of dopaminergic neurons after RA induction was the post-induction plating conditions used. No dopaminergic neurons were detected if cells were plated in serum-free media optimized for neuronal survival. However, significant numbers of dopamine neurons could be detected when cells were plated in media containing fetal calf serum. These observations support the conclusion that RA acts as a general neural inducing agent and that conditions post-induction either selectively support survival of a particular class of neuronal cells or that the conditions post-induction actually further instruct cells to differentiate into different types of neurons.  相似文献   

15.
HSPs (heat shock proteins) have been recognized to maintain cellular homoeostasis during changes in microenvironment. The present study aimed to investigate the HSPs expression pattern in hierarchical neural differentiation stages from mouse embryonal carcinoma stem cells (P19) and its role in heat stressed exposed cells. For induction of HSPs, cells were heated at 42°C for 30 min and recovered at 37°C in different time points. For neural differentiation, EBs (embryoid bodies) were formed by plating P19 cells in bacterial dishes in the presence of 1 mM RA (retinoic acid) and 5% FBS (fetal bovine serum). Then, on the sixth day, EBs were trypsinized and plated in differentiation medium containing neurobasal medium, B27, N2 and 5% FBS and for an extra 4 days. The expression of HSPs and neural cell markers were evaluated by Western blot, flow cytometry and immunocytochemistry in different stages. Our results indicate that HSC (heat shock constant)70 and HSP60 expressions decreased following RA treatment, EB formation and in mature neural cells derived from heat-stressed single cells and not heat-treated EBs. While the level of HSP90 increased six times following maturation process, HSP25 was expressed constantly during neural differentiation; however, its level was enhanced with heat stress. Accordingly, heat shock 12 h before the initiation of differentiation did not affect the expression of neuroectodermal and neural markers, nestin and β-tubulin III, respectively. However, both markers increased when heat shock was induced after treatment and when EBs were formed. In conclusion, our results raise the possibility that HSPs could regulate cell differentiation and proliferation under both physiological and pathological conditions.  相似文献   

16.
In vitro differentiation of spermatogonial stem cells (SSCs) promotes the understanding of the mechanism of spermatogenesis. The purpose of this study was to isolate spermatogonial stem cell-like cells from murine testicular tissue, which then were induced into haploid germ cells by retinoic acid (RA). The spermatogonial stem cell-like cells were purified and enriched by a two-step plating method based on different adherence velocities of SSCs and somatic cells. Cell colonies were present after culture in M1-medium for 3 days. Through alkaline phosphatase, RT-PCR and indirect immunofluorescence cell analysis, cell colonies were shown to be SSCs. Subsequently, cell colonies of SSCs were cultured in M2-medium containing RA for 2 days. Then the cell colonies of SSCs were again cultured in M1-medium for 6–8 days, RT-PCR and indirect immunofluorescence cell analysis were chosen to detect haploid male germ cells. It could be demonstrated that 10−7 mol l−1 of RA effectively induced the SSCs into haploid male germ cells in vitro.  相似文献   

17.
The aim of this study is to evaluate the collagen/hyaluronic acid (Col/HA) scaffold effect on the differentiation of insulin-producing cells (IPCs) from adipose-derived mesenchymal stem cells (ASCs). In this experimental study, ASCs were cultured and seeded in a Col/HA scaffold (3D culture) and then treated with induction media. After induction, the presence of IPCs was evaluated using gene expression (PDX-1, GLUT-2 and insulin) analysis and immunocytochemistry, while functional maturity was determined by measuring insulin release in response to low- and high-glucose media. The induced IPCs were morphologically similar to pancreatic islet-like cells. Expression of the islet-associated genes PDX-1, GLUT-2 and insulin genes in 3D-cultured cells was markedly higher than the 2D-cultured cells exposure differentiation media. Compared to the 2D culture of ASCs-derived IPCs, the insulin release from 3D ASCs-derived IPCs showed a nearly 4-fold (p?<?0.05) increase when exposed to a high glucose (25 mmol) medium. The percentage of insulin-positive cells in the 3D experimental group showed an approximately 4-fold increase compared to the 2D experimental culture cells. The results of this study demonstrated that the COL/HA scaffold can enhance the differentiation of IPCs from rat ASCs.  相似文献   

18.
19.
Retinoic acid (RA) plays multiple roles in the nervous system, including induction of neural differentiation, axon outgrowth and neural patterning. Previously, RA for neural differentiation of embryonic stem (ES) cells always relies on embryoid bodies (EBs) formation. Here we report an in vitro adherent monoculture system to induce mouse ES cells into neural cells accompanied with RA. RA (1 μM) treatment, during initial 2 days of differentiation, can enhance the expression of neural markers, such as Nestin, Tuj1 and MAP2, and result in an earlier neural differentiation of ES cells. Furthermore, RA promotes a significant increase in neurite elongation of ES-derived neurons. Our study also implies that RA induced to express Wnt antagonist Dickkopf-1 (Dkk-1) for neural differentiation. However, the mechanisms of RA triggering neural induction remain to be determined. Our simple and efficient strategy is proposed to provide a basis for studying RA signaling pathways in neural differentiation in vitro.  相似文献   

20.
It is well-established that fibroblast growth factors (FGFs) participate in mesoderm formation and patterning in the developing embryo. To identify cells in mammalian embryos that produce and/or respond to FGFs, we utilized the F9 teratocarcinoma cell system. Undifferentiated F9 cells resemble inner cell mass (ICM) cells of the mouse blastocyst by several criteria including having a characteristic high nuclear to cytoplasmic ratio and by their expression of stage-specific embryonic antigens. F9 stem cells differ from ICM cells by their low spontaneous rate of differentiation and their differentiation potential. ICM cells are heterogeneous with a proportion of the cells maintaining totipotency. In contrast, F9 stem cells appear capable of forming only endodermal derivatives. Retinoic acid (RA) treatment of F9 stem cells is required for them to differentiate, and under different culturing conditions the F9 cells will form either extraembryonic parietal or visceral endoderm. We have previously shown that FGF is synthesized by F9 parietal endoderm, but not by F9 stem cells. Our present study demonstrates that F9 aggregate cultures that contain visceral endoderm cells produce cell-associated-heparin-binding mitogens for 3T3 and endothelial cells, factors with characteristics of FGFs. Furthermore, our studies detect endothelial cell-mitogens within the extracellular matrix (ECM) of F9 parietal endoderm cells, not detected within F9 stem cell 'matrices'. Parietal endoderm cell matrix mitogens could be removed by prior treatment of the ECM with buffers containing heparin or 2 M NaCl, and could be neutralized by basic FGF antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号