首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cao H  Hong Y  Li M  Gu JD 《Microbial ecology》2011,62(4):813-823
The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean.  相似文献   

4.
Phylogenetic Diversity of Archaea and Bacteria in a Deep Subsurface Paleosol   总被引:10,自引:0,他引:10  
Abstract A low-biomass paleosol 188 m below the ground surface at the Department of Energy's Hanford Site in south-central Washington State was recovered and maintained at the in situ temperature (17°C) as an intact core or homogenized sediment for 0, 1, 3, 10, and 21 weeks post-sampling. Bacterial and archaeal 16S rRNA genes were amplified by PCR and cloned. Of 746 bacterial and 190 archaeal clones that were categorized by restriction fragment length polymorphism (RFLP), 242 bacterial and 16 archaeal clones were partially sequenced and compared against the small subunit ribosomal RNA database (RDP) and GenBank. Six bacterial and 16 archaeal clones sequences, with little similarity to those in public databases, were sequenced in their entirety, and subjected to more detained phylogenetic analysis. The most frequently occurring clones types were related to Pseudomonas, Bacillus, Micrococcus, Clavibacter, Nocardioides, Burkholderia, Comamonas, and Erythromicrobium. Clone sequences whose RDP similarity value was ≥0.6 consistently grouped with their nearest RDP neighbor during phylogenetic analysis. Six truly novel eubacterial sequences were identified; they consistently cluster with or near the Chloroflexaceae and sequences recovered from the Sargasso Sea. Sixteen unique archaeal RFLP groups were identified from 190 randomly-sampled clones. The novel archaeal rDNA clones formed a coherent clade along the major Crenarchaea branch containing all previously described mesophilic crenarchae clones, but remained firmly associated with 16S rDNA clones previously obtained from a thermal Fe/S spring in Yellowstone National Park. The wealth of group-specific genetic information identified during this study will now allow us to address specific hypotheses related to in situ stimulation of these deep subsurface microorganisms and changes in microbial community composition resulting from subsurface contamination or remediation processes at the Hanford Site. Revised: 21 October 1997; Accepted: 20 November 1997  相似文献   

5.
Wang P  Li T  Hu A  Wei Y  Guo W  Jiao N  Zhang C 《Microbial ecology》2010,60(4):796-806
Using the archaeal 16S rRNA gene, we determined the community structures of archaea of subseafloor sediments (~9-11 m below seafloor) from two geographically distant cores (MD05-2896, south, water depth 1,657 m; MD05-2902, north, water depth 3,697 m) in the South China Sea. Euryarchaeota accounted for 61.4% of total archaeal clone libraries at MD05-2896 and 56.2% at MD05-2902. At both locations, the Euryarchaeota-related sequences were dominated by Marine Benthic Group D, Terrestrial Miscellaneous Eryarchaeotal Group, and South African GoldMine Euryarchaeotal Group; the Crenarchaeota-related sequences were dominated by Marine Benthic Group B, Marine Group I, pSL12, and C3. The community structure showed no significant difference with depth at each location, suggesting the lack of stratification of archaeal populations in the deep-sea marine sediments in the South China Sea. On the other hand, the community structure is significantly different between the two sites, which may be related to geographical difference in the South China Sea.  相似文献   

6.
Plasmid Incidence in Bacteria from Deep Subsurface Sediments   总被引:5,自引:7,他引:5       下载免费PDF全文
Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu2+, Cr3+, and Hg2+ for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of β-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacteria to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those for drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.  相似文献   

7.
Abstract

Krishna Godavari (KG) basin, located in the eastern continental margin of India, is a geological region well known for the abundance of economically important minerals. However, less is known about the microbial ecology of its subsurface sediments. The present study is the first report on the comprehensive culture-independent census of bacterial communities of deep subsurface of KG basin and their relationship with the geochemical environment. Elemental and mineralogical characterization of the sediments highlighted the presence of carbon and nitrogen deprived conditions along with the abundance of metalliferous minerals, especially rich in valuable elements like zirconium, vanadium, cesium, and rare earth elements. Diversity analysis based on Illumina MiSeq high-throughput sequencing platform revealed the predominance of Firmicutes (44.24%), Proteobacteria (34.17%), Bacteroidetes (15.18%), and Actinobacteria (3.81%) in the deep subsurface of this basin. ‘Abundant’ and ‘rare’ sub-communities analysis indicated that a large number of phyla like Acidobacteria, Armatimonadetes, Chloroflexi, and Deinococcus-Thermus were exclusively present as a rare community. Statistical analyses demonstrated that geochemical parameters, especially depth, pH, and metal content, showed significant influence on the microbial community structure. The present study should help future investigations for microbial mediated sustainable utilization of mineral-rich sediments of the region.  相似文献   

8.

The extreme environments of South Africa mines were investigated to determine microbial community structure and biomass in the deep subsurface. These community parameters were determined using phospholipid fatty acid (PLFA) technique. Air, water and rock samples were collected from several levels and shafts in eight different mines. Biomass estimates ranged over nine orders of magnitude. Biofilm samples exhibited the highest biomass with quantities ranging from 10 3 to 10 7 pmol PLFA g ?1 . Rock samples had biomass ranging from 10 3 to 10 6 pmol PLFA g ?1 . Mine service waters and rock fracture waters had biomass estimates ranging from 10 0 to 10 6 pmol PLFA L ?1 . Air samples biomass values ranged from 10 ?2 to 10 0 pmol PLFA L ?1 . The biomass estimates were similar to those estimates for other deep subsurface sites. Redundancy analysis of the PLFA profiles distinguished between the sample types, where signature lipid biomarkers for aerobic and anaerobic prokaryotes, sulfate-and metal-reducing bacteria were associated with biofilms. Rock samples were enriched in 18:1 ω 9 c , 18:2 ω 6, br17:1s and br18:1s, which are indicative of microeukaryotes and metal- reducing bacteria. Air samples were enriched with 22:0, 17:1, 18:1, and a polyunsaturated fatty acid. Service waters had monounsaturated fatty acids. Fracture waters contained i17:0 and 10Me18:0 which indicated gram-positive and other anaerobic bacteria. When the fracture and service water sample PLFA responses to changes in environmental parameters of temperature, pH, and anion concentrations were analyzed, service waters correlated with higher nitrate and sulfate concentrations and the PLFAs 18:1 ω 7 c and 16:1 ω 7 c . Dreifontein shaft 5 samples correlated with chloride concentrations and terminally branched saturated fatty acids and branched monounsaturated fatty acids. Kloof, Tau Tona, and Merriespruit fracture waters aligned with temperature and pH vectors and 18:0, 20:0 and 22:6 ω 3. The redundancy analysis provided a robust method to understand the PLFA responses to changes in environmental parameters.  相似文献   

9.
Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. “Nitrosopumilus koreensis” AR1 and “Nitrosopumilus sediminis” AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA.  相似文献   

10.
Plant root exudates increase nutrient availability and influence microbial communities including archaeal members. We examined the archaeal community inhabiting the rhizoplane of two contrasting vascular plants, Dulichium arundinaceum and Sarracenia purpurea, from an acidic bog in upstate NY. Multiple archaeal 16S rRNA gene libraries showed that methanogenic Archaea were dominant in the rhizoplane of both plants. In addition, the community structure (evenness) of the rhizoplane was found markedly different from the bulk peat. The archaeal community in peat from the same site has been found dominated by the E2 group, meanwhile the rhizoplane communities on both plants were co-dominated by Methanosarcinaceae (MS), rice cluster (RC)-I, and E2. Complementary T-RFLP analysis confirmed the difference between bulk peat and rhizoplane, and further characterized the dominance pattern of MS, RC-I, and E2. In the rhizoplane, MS was dominant on both plants although as a less variable fraction in S. purpurea. RC-I was significantly more abundant than E2 on S. purpurea, while the opposite was observed on D. arundinaceum, suggesting a plant-specific enrichment. Also, the statistical analyses of T-RFLP data showed that although both plants overlap in their community structure, factors such as plant type, patch location, and time could explain nearly a third of the variability in the dataset. Other factors such as water table, plant replicate, and root depth had a low contribution to the observed variance. The results of this study illustrate the general effects of roots and the specific effects of plant types on their nearby archaeal communities which in bog-inhabiting plants were mainly composed by methanogenic groups.  相似文献   

11.
Twenty-five samples of stratal fluids obtained from a high-temperature (60–84°C) deep subsurface (1700–2500 m) petroleum reservoir of Western Siberia were investigated for the presence of dissimilatory Fe(III)-reducing microorganisms. Of the samples, 44% and 76% were positive for Fe(III) reduction with peptone and H2 respectively as electron donors. In most of these samples, the numbers of culturable thermophilic H2-utilizing iron reducers were in the order of 10–100 cells/ml. Nine strains of thermophilic anaerobic bacteria and archaea isolated from petroleum reservoirs were tested for their ability to reduce Fe(III). Eight strains belonging to the genera Thermoanaerobacter, Thermotoga, and Thermococcus were found capable of dissimilatory Fe(III) reduction, with peptone or H2 as electron donor and amorphous Fe(III) oxide as electron acceptor. These results demonstrated that Fe(III) reduction may be a common feature shared by a wide range of anaerobic thermophiles and hyperthermophiles in deep subsurface petroleum reservoirs. Received: 1 March 1999 / Accepted: 5 April 1999  相似文献   

12.
Abstract

Microbial community structure reflects the surrounding natural environment and changes to that environment. Although the subsurface at 5–100?m depth is important for human activities and there are potential risks of environmental pollution in this region, there have been only a few reports of subsurface microbial community structures in terrestrial areas. We investigated the diversity and community compositions of Bacteria and Archaea in boring cores collected from various depths at three different sites in the southern Kanto Plain, Japan. The results of 16S rRNA gene amplicon sequencing using MiSeq showed that the microbial community composition varied with the geological unit. Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) were dominant members within sediments accumulated during the Pleistocene in the Musashino Upland. In contrast, Acidobacteria and Chloroflexi characteristically appeared in the Holocene layers of the Arakawa Lowland. These data suggest that the subsurface microbial composition is controlled by the geological features of the sediments.  相似文献   

13.
During the past few years Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages and, more recently, the presence of novel archaeal phylogenetic lineages has been reported in coastal marine benthic environments. We investigated the relative abundance, vertical distribution, phylogenetic composition, and spatial variability of Archaea in deep-sea sediments collected from several stations in the Atlantic Ocean. Quantitative oligonucleotide hybridization experiments indicated that the relative abundance of archaeal 16S rRNA in deep-sea sediments (1500 m deep) ranged from about 2.5 to 8% of the total prokaryotic rRNA. Clone libraries of PCR-amplified archaeal rRNA genes (rDNA) were constructed from 10 depth intervals obtained from sediment cores collected at depths of 1,500, 2,600, and 4,500 m. Phylogenetic analysis of rDNA sequences revealed the presence of a complex archaeal population structure, whose members could be grouped into discrete phylogenetic lineages within the two kingdoms, Crenarchaeota and Euryarchaeota. Comparative denaturing gradient gel electrophoresis profile analysis of archaeal 16S rDNA V3 fragments revealed a significant depth-related variability in the composition of the archaeal population.  相似文献   

14.

Recent molecular analyses show that microbial communities of deep marine sediments harbor members of distinct, uncultured bacterial and archaeal lineages, in addition to Gram-positive bacteria and Proteobacteria that are detected by cultivation surveys. Several of these subsurface lineages show cosmopolitan occurrence patterns; they can be found in cold marine sediments and also in hydrothermal habitats, suggesting a continuous deep subsurface and hydrothermal biosphere with shared microbiota. The physiologies and activities of these uncultured subsurface lineages remain to be explored by innovative combinations of genomic and biogeochemical approaches.  相似文献   

15.
Changes in tree, liana, and understory plant diversity and community composition in five tropical rain forest fragments varying in area (18–2600 ha) and disturbance levels were studied on the Valparai plateau, Western Ghats. Systematic sampling using small quadrats (totaling 4 ha for trees and lianas, 0.16 ha for understory plants) enumerated 312 species in 103 families: 1968 trees (144 species), 2250 lianas (60 species), and 6123 understory plants (108 species). Tree species density, stem density, and basal area were higher in the three larger (> 100 ha) rain forest fragments but were negatively correlated with disturbance scores rather than area per se. Liana species density, stem density, and basal area were higher in moderately disturbed and lower in heavily disturbed fragments than in the three larger fragments. Understory species density was highest in the highly disturbed 18‐ha fragment, due to weedy invasive species occurring with rain forest plants. Nonmetric multidimensional scaling and Mantel tests revealed significant and similar patterns of floristic variation suggesting similar effects of disturbance on community compositional change for the three life‐forms. The five fragments encompassed substantial plant diversity in the regional landscape, harbored at least 70 endemic species (3.21% of the endemic flora of the Western Ghats–Sri Lanka biodiversity hotspot), and supported many endemic and threatened animals. The study indicates the significant conservation value of rain forest fragments in the Western Ghats, signals the need to protect them from further disturbances, and provides useful benchmarks for restoration and monitoring efforts.  相似文献   

16.
The continental shelf and slope in the northern South China Sea is well known for its prospect of oil/gas/gas-hydrate resources. To study microbial communities and their roles in carbon cycling, a 4.9-m sediment core was collected from the Qiongdongnan Basin on the continental slope of the South China Sea during our cruise HY4-2005-5 in 2005. Geochemical, mineralogical, and molecular phylogenetic analyses were carried out. Sulfate concentration in pore water decreased with depth. Abundant authigenic carbonates and pyrite were observed in the sediments. The bacterial community was dominated by aerobic and facultative organisms. Bacterial clone sequences belonged to the Gamma-, Alpha-, Deltaproteobacteria and Firmicutes group, and they were related to Fe(III) and/or Mn(IV) reducers, sulfate reducers, aromatic hydrocarbon degraders, thiosulfate/sulfite oxidizers, and denitrifiers. Archaeal clone sequences exhibited greater overall diversity than the bacterial clones with most sequences related to Deep-Sea Archaeal Group (DSAG), Miscellaneous Crenarchaeotic Group (MCG), and Uncultured Euryarchaeotic Clusters (UECs). Archaeal sequences related to Methanosarcinales, South African Gold Mine Euryarchaeotic Group (SAGMEG), Marine Benthic Group-D (MBG-D) were also present. Most of these groups are commonly present in deep-sea sediments, particularly in methane/organic-rich or putative methane hydrate-bearing sediments.  相似文献   

17.
Diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in samples of the northern South China Sea subsurface sediment were assessed by analyzing the amoA gene sequences retrieved from the samples. The microbial diversity was assessed using rarefaction and phylogenetic analyses. The deep-sea subsurface sediments harbored diverse and distinct AOA and AOB communities, but the abundance of AOA was lower than that of AOB, consistent with many other studies about bacteria and archaea in subsurface sediments. Diversity of AOA shown in the OTUs and Shannon index was correlated with the concentration of nitrite in the Pearson analysis, but no obvious relationships between the diversity or abundance of AOB and the physicochemical parameters could be identified in the present study, indicating the concentration of ammonium may not be an important factor to determine the diversity and abundance of ammonia-oxidizing prokaryotes in the subsurface sediments. Additionally, Nitrosomonas-like AOB was found to be dominant in subsurface sediments of the northern South China Sea showing a different adaption strategy comparing with some Nitrosospira-like AOB lineages. Concentration of nitrite was correlated with diversity of AOA, but no correlations between diversity and abundance of AOB and the physicochemical parameters were established in the study. Supplementary materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental files.  相似文献   

18.
Subsurface sediments obtained from three cores drilled to depths of 260 m below the surface in South Carolina were analyzed for heterotrophic bacteria; N2‐fixing microaerophiles; and nitrifying, sulfur‐oxidizing, and H2‐oxidizing lithotrophic bacteria. In addition, pore waters were extracted for chemical analysis of inorganic nitrogen species, sulfate, dissolved organic carbon, pH, and Eh. Autotroph populations were generally less than 103 most probable number (MPN) g‐1 dry sediment with sulfur‐oxidizing bacteria, detected in 60% of the sediment samples, being the most frequently encountered group. Nitrifying bacteria were detected mainly in sediments from one borehole (P28), and their populations in those sediments were correlated with pore‐water ammonium concentrations. Populations of heterotrophic bacteria in 60% of the sediments were greater than 106 colony forming units (CFU) g‐1 dry sediment and were typically lower in sediments of high clay content and low pH. Microaerophilic N2‐fixing bacteria were cultured from >50% and bacteria capable of growth on H2 were cultured from 35% of the subsurface sediments examined. Sediment texture, which controls porosity, water potential, and hydraulic conductivity, appears to be a major factor influencing microbial populations in coastal plain subsurface sediments.  相似文献   

19.
In microbial ecology, a fundamental question relates to how community diversity and composition change in response to perturbation. Most studies have had limited ability to deeply sample community structure (e.g. Sanger-sequenced 16S rRNA libraries), or have had limited taxonomic resolution (e.g. studies based on 16S rRNA hypervariable region sequencing). Here, we combine the higher taxonomic resolution of near-full-length 16S rRNA gene amplicons with the economics and sensitivity of short-read sequencing to assay the abundance and identity of organisms that represent as little as 0.01% of sediment bacterial communities. We used a new version of EMIRGE optimized for large data size to reconstruct near-full-length 16S rRNA genes from amplicons sheared and sequenced with Illumina technology. The approach allowed us to differentiate the community composition among samples acquired before perturbation, after acetate amendment shifted the predominant metabolism to iron reduction, and once sulfate reduction began. Results were highly reproducible across technical replicates, and identified specific taxa that responded to the perturbation. All samples contain very high alpha diversity and abundant organisms from phyla without cultivated representatives. Surprisingly, at the time points measured, there was no strong loss of evenness, despite the selective pressure of acetate amendment and change in the terminal electron accepting process. However, community membership was altered significantly. The method allows for sensitive, accurate profiling of the “long tail” of low abundance organisms that exist in many microbial communities, and can resolve population dynamics in response to environmental change.  相似文献   

20.
Abstract

In recent years, the hadal trenches have been recognized as biological hot spots for deep sea researchers. Due to high hydrostatic pressure, low temperatures, high salinity and low nutrients, the microorganisms in hadal trenches may have unique community structure with potential for biotechnical application. Compared with bacteria and archaea, the diversity and ecological roles of fungi in hadal trenches remain largely unknown. The purpose of this study was to explore fungal diversity in deep-sea sediments of the Yap trench and their denitrification potential. In the present study, a total of 106 fungal strains were isolated from six sediment samples collected in the East Yap Trench. These fungi belonged to five classes (Dothideomycetes, Eurotiomycetes, Sordariomycetes, Cystobasidiomycetes, and Microbotryomycetes), thirteen genera (Acremonium, Alternaria, Aureobasidium, Aspergillus, Cladosporium, Cystobasidium, Engyodontium, Gliomastix, Lecanicillium, Penicillium, Phoma, Rhodotorula and Trichoderma) and eighteen species, based on morphological identification and ITS-rDNA sequence analysis. Among them, the dominant genus is Cladosporium, which accounting for 42.45% of the total fungal strains. Meanwhile, the denitrification potential of the fungal strains was also examined with two different denitrifying media (nitrate and nitrite as sole substrate, respectively). Two fungal strains (Acremonium sp. and Aspergillus versicolor), were found to be able to produce N2O ex situ in the presence of nitrite. No fungus was found to produce N2O by using nitrate. Our results suggest that fungi in hadal sediments, play important roles in nitrogen cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号